Proposal for New Project
DC Electricity Metering

Proposing Country: United States
History

• TC12 is Parent Technical Committee.
• Discussions under PG1 – revisions for R46: Electricity Meters
• Initial decision: Exclude from R46 revision

 1st PG meeting, May 2018

• May 2021 meeting: Subgroup formed for DC Metering
 Include as annex
 Revisit as a PG
 No progress from this point until June 2023.

• June 2023 meeting: Decision to form a new project.
 Too difficult to maintain AC & DC in same recommendation
Existing Standards

ANSI C12.32-2021 American National Standard for Electricity Meters for the Measurement of DC Energy

 ANSI also has a subcommittee on developing revenue grade DC transducers.

IEC 62053-41 Electricity metering equipment - Particular requirements - Part 41: Static meters for DC energy (classes 0.5 and 1)

EN 50470-4
Motivation

Existing
OIML G22 provides an option for EVSEs with separately type approved meters where specifications meet or exceed those requirements in the guide.

Emerging*
• Solar arrays
• Batteries
• Power Electronics
• EVs

Challenge:
Market is small.

* Information provided by David Lawrence, Duke Energy, Emerging Technology Office
Motivation

Existing
OIML G22 provides an option for EVSEs with separately type approved meters where specifications meet or exceed those requirements in the guide.

Emerging*
- Solar arrays
- Batteries
- Power Electronics
- EVs

Challenge:
Market is small.

Opportunity:
Jump start international harmonization.

* Information provided by David Lawrence, Duke Energy, Emerging Technology Office
Advantages of DC Usage*

• Lack of conversion losses: In the US, 5-20% of power lost on AC/DC conversion
• Many new loads are DC: 85% of those found in buildings, including many new appliances.
• Improved energy efficiency of DC motors and DC lighting.
• Reduced wiring costs – reduced usage of copper.

* Information provided by David Lawrence, Duke Energy, Emerging Technology Office
Voltage by Use Case*

• 12-48VDC: Cell towers, lighting
• 125VDC: Utility substation battery
• 350VDC: Data center, residential home (DC), commercial building, EV charging
• 750VDC: DC bus neighborhood microgrid
• 1 000VDC: PV farm, DC bus microgrid, fast EV charging
• 1 500VDC: DC bus microgrid

* Information provided by David Lawrence, Duke Energy, Emerging Technology Office
Scope

• Develop DC metering standard (recommendation)
• Metrological & technical requirements for revenue applications
• Performance criteria
• Requirements for type approval, verification and reverification