Bulletin de l'Organisation Internationale de Métrologie Légale

Sommaire

| République Fédérale d'Allemagne — Experience gained in the inspection of prepackages |
| par W. Gögge | 3 |
| Danemark — Legal metrology in Denmark 1683-1982 |
| par H. Blichfeldt, L. Rosenkilde et B. F. Sorensen | 13 |
| Roumanie — Deadweight standard machines for static torque moment reproduction |
par V. Lamber et N. Fintanaru	22
Enseignement de la Metrologie — Littérature	35
Metrology Education — Literature	36

Informations

Séminaire sur les instruments de mesure précise en industries de l'ingénierie — ECE (United Nations)	37
Métrologie research organisé by the Commission of the European Community	40
Réunions	42

Documentation

Centre de Documentation : Documents reçus au cours du 4e trimestre 1982	43
Recommandations Internationales : Liste complète à jour	47
États membres de l'Organisation Internationale de Métrologie Légale	50
Membres actuels du Comité International de Métrologie Légale	51
EXPERIENCE GAINED
in the INSPECTION of PREPACKAGES

by W. GÖGGE

Director, Legal Metrology Administration, Rheinland-Pfalz

RESUME — L'article ci-dessous, concernant l'expérience acquise dans la vérification des produits préemballés, donne d'abord un aperçu de la réglementation en vigueur en R.F.A. et décrit ensuite l'équipement de vérification utilisé par l'administration de métrologie légale de Rheinland-Pfalz.

1. Introduction

For more than ten years the verification authorities of the Federal Republic of Germany and the Land of Berlin have inspected certain prepacked goods destined for the consumer, so-called prepackages. The present paper briefly explains the legal regulations in force and then describes the technical equipment which the verification authority of the Rhineland-Palatinate - a medium-sized authority - has at its disposal to accomplish its task. The description also includes the auxiliary means used, such as the electronic acquisition and processing of data and measurement values and the evaluation of the tests results by means of a computer.

2. Metrological requirements for prepackages

The reason why, at the beginning of the seventies, new regulations were laid down, was the ever-increasing number of prepackages, that is to say, packages containing goods which the consumer is offered in all fields of trade and which are packaged prior to purchase and not in the presence of the buyer, as was formerly the case. The machines used for packaging became more and more elaborate and expensive; they could no longer be verified in the conventional way as they had to be provided with a great variety of correcting devices which required to be adjusted and re-set, even during operation.

It was therefore decided to discontinue the verification of the filling machines; instead, the goods which are produced by these machines must now be tested for compliance with the requirements concerning their contents quantity. Due to the large number of packages, the verification authorities can accomplish this only by random sampling. Procedures had therefore to be developed which, with as little effort and outlay as possible, provide information as accurate as possible on the contents quantity of a large number of packages of the same kind. As regards the contents quantity of the packages, the following requirements were stipulated:

1. The arithmetic mean of the contents quantity of a large number of packages must at least conform with the nominal contents quantity indicated on the packages.

2. Two tolerance limits are fixed: Tu1 and Tu2.
 2.1 Only 2% of the packages may fall below Tu1.
 2.2 Packages falling below Tu2 must not be marketed at all.
The definition of the test procedure was first based on the assumption, usually correct, that the statistical distribution of the contents quantities corresponds to a Gaussian distribution as shown in Fig. 1. In this figure curve 1 shows packaging which "optimally" complies with the requirements mentioned above. Curve 2 shows a filling shifted to the right into the safe area. The actual contents quantities are above the nominal contents quantity. In the case of a filling according to curve 1, very small variations, often unavoidable, can result in inadequate fillings which are not admissible.

![Graph showing statistical distribution of contents quantities](image)

Figure 1
Possible statistical distribution of the contents quantities

The filling according to curve 3 presents a much wider dispersion than that of curve 1 or 2. Here the contents quantities do not necessarily fall below the permissible tolerances Tu1 and Tu2, but the packages are considerably overfilled. In this case, the packaging firm will have to decide whether in the long run, it is economically feasible to give away so much of the product or whether it is advisable in the future to use better filling systems operating within narrower dispersion limits.
3. Duties of the verification authority

The verification authorities must check whether the metrological requirements on the filling procedure specified in the above section are complied with. In doing so, they will organize their inspections in such a way that interference with the economic process is as slight as possible, that the test costs are kept low and that, if possible, the goods to be tested remain undamaged during the inspections. These conditions cannot always be met; an attempt can be made to optimize them by carrying out the inspections in the packaging firm. If, for instance, liquid products are bottled by volume, in order to determine the tare, empty bottles selected at random are weighed, marked, put into the bottling machine and weighed again after filling. The density is determined by means of a pycnometer, a displacement sphere or a DMA-densimeter. This is a densimeter where the oscillation of a glass-tube is a measure for the density. The filled volume is calculated from the density and the net weight. With this kind of inspection, the course of operation need scarcely be interrupted and no goods are destroyed (with the exception of the small amount required for the density determination).

However, if the verification officer wishes to be sure of the accuracy of the filling procedure during periods between own tests packages must be taken from stock. This is also necessary, for example, when at the time the officer is present, filling is impossible for operational reasons, or when the filling system can be easily adjusted that upon arrival of the verification officer, the machine can be quickly set to a more favourable value. Imported goods filled must be controlled in the same way. As a rule, testing is then destructive as in most cases, the tare is unknown or not sufficiently constant.

At the beginning of every inspection the lot size must first be specified. By this is meant all pieces with the same contents quantity and the same type of packing, which have been filled in the same place during a certain time. For practical reasons, it has been stipulated that all pieces produced within one hour belong to one lot. This criterion, however, cannot always be used; other periods of time can be chosen and other conditions laid down, for example, that the pieces in one batch belong to one lot. In a non-destructive test from stock it is necessary to follow this procedure, since as a rule it is not known which piece was produced during any one hour. In general, the rule applies that a lot should contain not more than 10 000 pieces.

From this lot, the sample has to be taken at random. The size of the sample must have been previously specified on the basis of the laws of statistics.

In a non-destructive test, for example, in a lot size consisting of 501 - 3 200 pieces, 80 pieces should be inspected. In a destructive test, this number will have to be considerably reduced in order to keep the quantity of goods destroyed by the test as low as possible. With a lot of the same size (501 to 3 200 pieces) 13 pieces are sufficient to make an estimation of the filling. On one point, however, we must be quite clear: after inspecting 13 pieces, it is impossible to make such confident statements on the quality of the filling as after inspecting 80 pieces. In every case, it is important for the samples to be selected at random. It is not admissible, for example, to check only those pieces which are on the top of a pallet. Each piece must have the same chances of being selected for inspection, and for this reason it is quite possible that further handling by cranes and fork-lifts will be necessary. After this, the mean value of the sample is determined and checked to ascertain whether the permissible tolerances have been met. The equipment described in section 4 is used for this purpose.

Besides metrological work of this kind, the verification officer is also entrusted with other tasks. He must check that the piece is labelled according to regulations, that the contents quantity as printed is of the prescribed size and is clearly legible, that particulars of the manufacturer are given (name of maker, place of registered office and manufacturer) or if it is a so-called deceptive package, that is, a package
Figure 2
Testing device first used for prepackages. The weight values are fed into the computer by hand.

Figure 3
Compact testing device
Electronic high-accuracy weighing instrument, maximum capacity 3 kg with two weighing ranges:
up to 800 g, 10 mg interval - up to 3 000 g, 0.1 g interval
Tare range up to 3 000 g. Direct connection to computer
where the volume of the quantity filled is out of all tolerable proportion to the total volume of the container.

As the manufacturer does not have to use verified filling machines, provisions should be made so that he uses verified measuring equipment for the adjustment of the packaging machines and for his own checks on the packages produced. It is then the task of the verification officer to see that this equipment has been verified, and if necessary to carry out a subsequent verification.

If there exists an obligation for the manufacturer to record and statistically evaluate the values obtained from his own checks, the verification officer will also inspect these records. If in doing so, he discovers that the records show inadmissible values, it is not a punishable offense according to our interpretation of the law, since an offender is not obliged to produce evidence of his own guilt. In such a case, the verification officer will visit the firm at short intervals to ascertain that the packaged goods are in order. Inspections at shorter intervals are also recommended after rejection of a lot during the regular inspections.

In our experience, the inspection of prepackages at the point of sale is of great importance. Here, however, in general it is not packages of the same nominal contents quantity which are inspected, but packages of varying nominal contents quantity (for example: packaged meat, cheese, fruit, vegetables). In this case statistical methods for checking the contents quantity cannot be applied. The deviation from the content quantity printed on the label of every individual package shall not be greater than the maximum permissible error laid down in the Regulations. During inspections of prepackages of varying contents quantity we have found that 20% to 30% of the packages tested were incorrectly filled.

Inspections

In every case, at least one measuring instrument for examining the contents quantity is required. As a rule, weighing instruments are used, even when the volume of packages is to be tested. In this case, the density must also be determined, but by doing this instead of only using a volume-measuring instrument more reliable data can be obtained.

There are however, products which can only be tested with a volume-measuring instrument, when for example it is not possible to determine correctly the density; this is the case with canned fruit and paints.

For the statistical evaluation the verification officer should in addition to the weighing instrument have at least a pocket-calculator, at his disposal; with a statistics-calculator, the evaluation of the test will be that much easier.

The calculator should preferably be equipped with a printer as this provides evidence while avoiding errors which could arise through writing by hand.

A testing device of this kind, as used by the verification authorities in the Rhineland-Palatinate shortly after the introduction of the regulations governing prepackages, is shown in Fig. 2.

The indicated values must be read off by the inspector and put manually into the computer standing beside the device. The trolley enables the equipment to be transported within the packer’s premises and also provides a space for depositing the packages to be inspected.

Reading of the indications was not necessary in a later version of the equipment (introduced in 1972) where the mechanical weighing instrument was fitted with an electronic read-out device and an interface for a desk-computer.

However, both these devices were in use for a few years only; they proved to be too bulky and difficult to transport. A device like the one shown in Fig. 3 is now used. The precision weighing instrument is electronic and has a maximum
Figure 4

Signal flow chart of a computer-aided prepackage test with an HP 97S computer
(Example: Statistical testing of packages with liquid contents; sample size: 13 pieces)
capacity of 3 kg. It covers two weighing ranges, the first extends to 800 g with 1 interval ± 10 mg and the second to 3 000 g with 1 interval ± 0.1 g. The changeover is automatic. The tare range extends to 3 000 g. Besides countless pre-wired mathematical, statistical and scientific functions, the connected computer is freely programmable by means of magnetic cards. The signal flow chart for a practical prepackage inspection is shown in Fig. 4. The computer has 28 data memory registers, 224 storable program steps and 3 subroutine levels. The precision weighing instrument and the computer Hewlett Packard 97S together with both interfaces and the power supply are installed in a suitcase. The equipment is thus very compact. Its dimensions are 500 mm × 380 mm × 150 mm, the weights are: weighing instrument 6.2 kg, interface of the weighing instrument 1.2 kg, computer together with its interface 1.7 kg and the suitcase with power supply 6.6 kg. The total weight of the whole equipment is 15.7 kg. As the equipment is not operated by batteries, it is necessary to connect it to a 220 V power supply system.

The weighing instrument is a Sartorius 1264 MP, but one may as well use a Mettler Delta Range PC 4400. There is only few elastic material in the suitcase to protect the equipment from shocks and vibration. During almost 2 years since this equipment is in use, we had however no problems with these influences. Despite the large number of facilities the computer’s storage capacity is too limited to deal with every possible kind of prepackage inspection. The necessary calculations can indeed be made, but the programming, the input and processing of data are more convenient with the newly-developed computers which will replace those now in use.

One particular advantage of the device used at present is its compactness.

4. Evaluation of tests

The verification officer receives directly at the place of inspection an audit from the computer showing whether the prescribed requirements have been met. He can discuss this immediately with the person responsible at the packing plant, and initiate corrective action. In the case of faults being found, he must also decide what punitive measures are necessary. These range from a verbal caution or an on-the-spot cautionary fine of up to 20 DM, to being reported for contravention of the regulations, which in turn is punishable by a court fine of up to 10 000 DM.

In the Rhineland-Palatinate, the reports of contravention of the regulations are not dealt with by the individual verification offices, but by the verification authority responsible for the whole Land. It has proved to be of vital necessity that any reports of contravention of regulations are thoroughly investigated.

A court fine should only be imposed when it has been proved that the accused has actually contravened existing regulations. The audit must thus be checked and a report drawn up using such wording that it can be submitted as possible evidence to an ordinary court of law. The equipment shown in Fig. 5 serves this purpose. The operator of the device is able to conduct a direct dialogue via the screen so that after completion of the program, all necessary details are included in the audit. The legislation governing the control of prepackages is contained in the computer program. A flow chart is shown in Fig. 6. When the test has been completed, an audit such as the one shown in Table 1 is printed. This is the basis of a penalty notice issued by an automatic typewriter (screen device with two disk storage units and a high-speed wheel printer). We do not use a printed form for a penalty notice - as is frequently the case - but write a personal letter, giving the offender a detailed explanation of the shortcomings discovered during the prepackage inspection.

The computer program is written by the Rhineland- Palatinate verification authority itself, making it possible for all changes in regulations to be immediately included. Programs are available on request.
Equipment for the evaluation of prepackage tests

Thanks to these rationalized testing and evaluation methods it was possible to carry out 3,940 inspections at producers in the Rhineland-Palatinate in 1981 and to test 190,000 prepackages in 5,599 random sample tests. In 11.3 % of all cases, the mean value was too low, in 4.9 % the tolerance limit Tu1, and in 8.9 % the tolerance limit Tu2 were not complied with.
Computer-aided scheme of the operating sequence of a prepackage test with a CBM 3032 computer

Start

Input:

Determination of scope of test

Number of packages tested, Lot size, Nominal contents quantity Quantity filled in grams or millilitres? (density input) Full or sample test? Tu2 test? Destructive test? Open, refillable packages? Most difficult to fill?

Calculation of legally prescribed tolerances

Minus tolerance Tu1 Absolute tolerance Tu2 k-value for corrected mean value Assumed number C

Tare data input

Number of tare values a) mean value of 10 tare values b) at tare 10% of nominal contents quantity: calculation of tare dispersion Individual tare values Tare correction, e.g. bottle corks

Weight input (gross)

Correction values input

Drying out Wetting Standards error

Calculation and classification of all measuring values

Mean value Standard deviation Corrected mean value

Screen:
test result

No. of packages below minus tolerance Tu1 No. of packages below minus tolerance Tu2

Input:

Data of firm inspected and of inspector

Name, address, inspector, verification office, date, description of product, marketing stage, place of inspection

Print-out

Figure 6
Table 1

EVALUATION FOR THE RECORD OF A PREPACKAGE VERIFICATION OF THE SAME NOMINAL PACKAGE CONTENT (translation)

<table>
<thead>
<tr>
<th>Date of test</th>
<th>30.2.1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification administration</td>
<td>Bad Kreuznach</td>
</tr>
<tr>
<td>Verification officer</td>
<td>Muller</td>
</tr>
<tr>
<td>Tests made at</td>
<td>Imported Co. Fruchthausen (Importer) Warehouses</td>
</tr>
<tr>
<td>Nature of product</td>
<td>Grape juice</td>
</tr>
<tr>
<td>Nominal package content</td>
<td>1000 millilitre (ml)</td>
</tr>
<tr>
<td>Density of product rho</td>
<td>1.013 g/ml</td>
</tr>
<tr>
<td>Lot size</td>
<td>110 packages</td>
</tr>
<tr>
<td>Extent of test</td>
<td>13 packages (sample) destructive test</td>
</tr>
<tr>
<td>Mean tare value</td>
<td>5.83 g</td>
</tr>
</tbody>
</table>

Content of individual packages in millilitre

The values stated within brackets () are gross values of tests in gram

Values with * are below Tu 1 = 985 ml, with ** are below Tu 2 = 970 ml

<table>
<thead>
<tr>
<th>Package</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>973.9</td>
<td>(992.4)*</td>
</tr>
<tr>
<td>2</td>
<td>1003.2</td>
<td>(1022.1)</td>
</tr>
<tr>
<td>3</td>
<td>998.4</td>
<td>(1017.2)</td>
</tr>
<tr>
<td>4</td>
<td>995.4</td>
<td>(1014.2)</td>
</tr>
<tr>
<td>5</td>
<td>993.4</td>
<td>(1012.1)</td>
</tr>
<tr>
<td>6</td>
<td>996.4</td>
<td>(1015.1)</td>
</tr>
<tr>
<td>7</td>
<td>998.3</td>
<td>(1017.1)</td>
</tr>
<tr>
<td>8</td>
<td>992.5</td>
<td>(1011.3)</td>
</tr>
<tr>
<td>9</td>
<td>990.6</td>
<td>(1009.3)</td>
</tr>
<tr>
<td>10</td>
<td>988.6</td>
<td>(1007.3)</td>
</tr>
<tr>
<td>11</td>
<td>985.7</td>
<td>(1004.4)</td>
</tr>
<tr>
<td>12</td>
<td>980.9</td>
<td>(999.5)*</td>
</tr>
<tr>
<td>13</td>
<td>961.3</td>
<td>(979.6)**</td>
</tr>
</tbody>
</table>

Conformity of the mean value

Mean value of sample \bar{x}: 989.13 ml

Standard deviation s: 11.48 ml

Corrected mean value of sample $\bar{x}_0 = \bar{x} + k \cdot s$ $(k = 0.847)$

$\bar{x}_0 = 998.85$ ml (rounded to 999 ml)

Mean value too low by 1 millilitre

Conformity of low limits

Number of packages below Tu 1: 3 (admissible: 1)

whereof below Tu 2: 1 (admissible: 0)
LEGAL METROLOGY in DENMARK
1683-1982

by H. BLICHFELDT, L. ROSENKILDE and B.F. SORENSEN
DANTEST, National Institute for Testing and Verification

SUMMARY — The organisation of metrology in Denmark is in full development. The present paper summarizes the historical evolution and describes the administrative and technical liaisons existing by the end of 1982. The changes foreseen for the near future will be subject to another paper in the Bulletin.

RESUME — L'organisation de la métrologie au Danemark est en pleine évolution. L'article ci-dessous donne un aperçu de l'évolution historique et décrit les liens administratifs et techniques en vigueur à la fin 1982. Les changements à prévoir dans un proche avenir feront l'objet d'un autre article dans le Bulletin.

1. Historical review

Until the end of the 17th century many attempts had been made in Denmark and Norway to stop the chaotic situation with numerous local unit systems for weights and measures.

After the introduction of the absolute monarchy the young King Christian V issued on 1st of May 1683 a royal decree to the effect, that measurements for length, volume and mass should be unified throughout the Danish-Norwegian realm.

Ole Romer (1644-1710), professor in astronomy and mathematics who also determined the velocity of light, was entrusted with the manufacture of original standards and with the establishment of a « test office », which had to test and approve all instruments to be « stamped or branded », i.e. authorized for use. Fifteen years later - in 1698 - two sets of original standards for mass, length and volume were finished.

One set was kept by the municipal authority of the city of Copenhagen which at the same time together with four other towns, Aarhus and Aalborg in Denmark, Bergen and Christiania (Oslo) in Norway, obtained the monopoly to verify and deal in measuring instruments used for trade. The second set of original standards was placed in the custody or the « Commerce Collegio » (ministry of trade) and later transported to the royal castle of Rosenborg.

After 15 years of experience, Ole Romer was able to prepare a far more elaborate decree issued in 1698 and virtually forming the basic regulations until 1907. This decree dealt not only with the verification work, but also with standards and their preservation as well prescriptions for the choice of material and design for

Bulletin OIML N° 89 - Décembre 1982
measuring instruments, but strange enough not a word was said about permissible errors in verification, although such were proposed to the King by Ole Romer.

The steady development was suddenly interrupted in 1728, when a conflagration devastated the major part of Copenhagen and destroyed the original standards at the Town Hall. At the same time, the Rosenborg set seems - for unknown reasons - to have been forgotten. Therefore, in 1734, a completely new set of standards was established. At the end of the 18th century two more towns, Odense and Ribe, were granted authority for verification.

During the 19th century, the need for more well-defined and accurate standards, compatible to those of other European countries, arose. Thus, in 1835, the Danish ell (unit of length) was set to be equal to two « Berliner Feet », and, in 1839, the Danish pound was redefined to be exactly one half of the French kilogram, which only affected the former pound by fractions of gram.

In 1907 a new act introduced the metric system in Denmark to become effective in 1912. At the same time, the responsibility for verification was withdrawn from the municipal authorities and a National Bureau of Weights and Measures (NBWM) * was established directly under the Ministry of Trade. Moreover, the new legislation emphasized the supervision of measuring instruments used in trade.

2. The existing legal background

The « Act on Weights and Measures » was revised again in 1950 and this act constituted the legislation in Denmark until 31 December 1982.

The purpose of the revision was partly to modernize the act in accordance with the general technical development, and partly to intensify the control of measuring instruments used for trade, based on the fact that surveys of such instruments had indicated an unacceptable situation.

The result was, that the police was charged with the regular periodic inspection of weighing machines in retail shops, and that the relative small staff of technicians at the Bureau was supplemented with some 30 inspectors placed in all parts of the country.

Another new feature was the introduction of periodical verification of various measuring instruments, e.g. legal weights.

According to this legislation the National Bureau of Weights and Measures deals with all measuring instruments used for trade in the field of length, mass, and volume of liquids. It can be mentioned, however that town gas meters and cold water meters are approved and verified by the municipal works only. This will probably be changed in the near future, in connection with a new act on metrology, which comes into force from 1 January 1983. The scope and objectives of this new act will be the subject of a later article in this Bulletin.

3. Establishment of DANTEST and reorganisation of the NBWM on 1 January 1980

Legal metrology in Denmark, as in most other countries, has been conducted by means of pattern evaluation and subsequent pattern approval of instruments

* Abbreviation used for the purpose of this paper. The name in Danish has been Justervaesenet, abbreviated Jv.
Figure 1
Old Danish weight standards

Figure 2
Old Danish cubic feet standards
combined with initial verification followed either by subsequent periodic verification or by periodic inspection examination all confirmed by sealing and stamping the instrument as approved for legal use. This work was until the end of 1979 performed by the NBWM.

By 1 January 1980 DANTEST National Institute for Testing and Verification was established as an independent institute merging together the National Institute for Testing Materials and the main part of the NBWM. This part included the metrology laboratories with staff and all the inspectors in the field.

The practical work is now performed by DANTEST under the legal responsibility of the NBWM, which also issues the regulations and technical directives for legal metrology. Applications for pattern approval are submitted to the NBWM, which after evaluation of the documentation by order from the Ministry of Industries directs DANTEST to perform the examination and testing required.

Initial verification and subsequent periodic verification or inspection examination etc. are also performed by DANTEST. This means that at the moment the NBWM and DANTEST in common form the legal metrology organization in Denmark. Other institutes may, however, be involved in such testing for which they have specialized.

This actual arrangement and the procedures and equipment involved will be described in the following chapter.

4. Legal Metrology Organization 1982

The complete range of the responsibility of the NBWM is as follows:

A. Technical Administrative
 A 1. Regulations - administrative and technical directives
 A 2. Pattern approval
 A 3. Coordinating technical authority - relations to EEC and the Nordic countries
 A 4. International cooperation - OIML, EEC and the Nordic countries

B. Testing
 B 1. Pattern evaluation
 B 2. Verification
 B 3. Calibration

C. Inspection Examination
 Compulsory inspection examination in situ (free of charge).

D. Production/Sale
 D 1. Production, adjustment and verification of weights for use in trade.
 D 2. Sale of measuring instruments in accordance with an old national monopoly (weights, volumetric measures, length measures and steelyards).

4 A. Technical - administrative functions

As mentioned in the previous chapter, the NBWM issues the regulations for legal instruments concerning length, mass and volume of liquids. This work is
based on OIML recommendations and the EEC directives, which Denmark as a member state is obliged to implement as Danish legislation.

The pattern approval based on the pattern evaluation performed by and reported from DANTEST is issued by the NBWM as approving authority.

The NBWM follows the metrological activities in OIML, the Nordic countries, EEC, etc. and coordinates the Danish participation in these international activities. In order to ensure a technically qualified representation in the various working groups, NBWM often calls upon specialists from DANTEST to act as Danish representatives.

4 B. Testing

The pattern evaluation is performed in the DANTEST laboratories, but the test work is conducted in contact with the NBWM staff in order to be able to correct the course of action in the light of the results obtained. All results are compiled and reported to NBWM for final decision. The verification work is carried out either in the laboratories of DANTEST, or externally under supervision of an inspector from DANTEST and with standards periodically tested and calibrated by DANTEST.

Volume meters for liquids are verified at least once a year, weights at least once in 3 years, and volumetric measures at least once in 4 years.

As a basis for the pattern evaluation and verification work DANTEST maintains calibration facilities related to length, mass and volume, as described in chapter 5.
4 C. Inspection examination

This activity is performed periodically on a 4 year schedule, and therefore it concerns mainly weighing machines, for which no periodical verification is prescribed.

The inspection is carried out by DANTEST inspectors, and financed by a special grant through the NBWM, which means that it is free of charge for the owner the instrument.

4 D. Production/Sale

The supply of certain measuring instruments to the market is a historically based obligation, which is likely to disappear in 1983 under the new legislation. These instruments are produced by subcontractors and only the adjustment, verification and sale are carried out by DANTEST.

5. DANTEST organization, metrology laboratories and special metrological equipment

DANTEST ORGANIZATION

![Diagram of DANTEST organization]

The whole spectrum of DANTEST activities is shown in the organization plan (fig. 4). The legal metrology constitutes the main task of the metrology division. However, some related activities are also placed there.
Figure 5
DANTEST laboratory for mass and force

Figure 6
Gravimetric calibration of small volumetric measures
5.1 Verification branch

For the testing of weighbridges a special vehicle is used (lorry with trailer), carrying a number of 1 000 kg standard weights up to total weight of 43 ton (fig 8). The total wheel base (lorry with trailer) is 12 meters.

5.2 Applied metrology branch I - II

Laboratories for
— Calibration of mass
 up to 1 000 kg
— Calibration of materialized length measures using a specially constructed 20 m measuring machine (See « OIML Bulletin » No. 76, September 1979)
— Calibration of force in the range 1 000 kN Compression 200 kN Tension
— Calibration of manometers in the range up to 3 500 bar
— Pattern examination of legal instruments such as weighing machines and volume meters
 A climatic chamber with a floor space 2 × 3 m and height 3 m, covering the temperature range from —10°C to +40°C is installed in this laboratory
— Calibration of densitometers for natural gas in the range 1 kg/m³ - 80 kg/m³ (under running - in)
— Measurements of the compressibility of gas mixtures

Out of other activities which are not directly connected to a laboratory one may mention the testing of slot machines and supervision of workshops authorized to install and repair tachographs in vehicles.

6. Accreditation and authorization

Fig. 3 also shows the Danish authorization system. Based on the approval of the « National Testing Board » qualified laboratories are authorized in various fields of testing and calibration.

This arrangement has been built up in the seventies, and a number of both official and private laboratories have been authorized according to the regulations.

DANTEST has already obtained authorization for a number of its testing and calibration activities, but the legal work today is performed on the basis of a departmental accreditation and not a formal authorization, allowing NBWM to use DANTEST for this work.

In the future when the new act will be operative, the legal work is likely to be safeguarded by authorized laboratories, when the operations are suited for the already established authorization rules. If some areas are not suited for this system, accreditation of laboratories on another basis might be a solution to the problem.

Through the « Technology Council » (fig. 3) it is possible to obtain financial support for projects and technological development also in the field of metrology.
Figure 7 — Calibration of 1000 kg weights

Figure 8 — Vehicle with 1000 kg weights for verification of weighbridges (total 43 ton)
DEADWEIGHT STANDARD MACHINES
for STATIC TORQUE MOMENT REPRODUCTION

by V. LAMBERT* and N. FÎNÎNARU**

SUMMARY — Torque dynamometers are largely used in industry to measure the output characteristics of motors and engines and for setting the torque of various mechanical devices including safety devices, fixed torque wrenches, etc.

Precision torque dynamometers are nowadays frequently consisting of deformable cylinders equipped with strain-gauge, inductive or potentiometric transducers connected to an electrical indicating or recording devices.

The calibration of such torque dynamometers requires special machines by which the unit of torque can be reproduced to the required accuracy.

This paper describes two such machines having the capacity of 50 Nm and 6 kNm and by which the static torque moment is reproduced from the basic quantities - length and force. These deadweight machines are of constant arm length - variable load type. Both machines are used as standards and have an accuracy of 0.05 %.

RESUME — Les couple-mètres dynamométriques sont couramment utilisés dans l'industrie pour mesurer les caractéristiques de moteurs et pour le réglage du couple de divers dispositifs de sécurité tels que clés dynamométriques, etc.

Les couple-mètres de précision sont souvent constitués par des tubes cylindriques déformables équipés de capteurs à jauge contrainte, à potentiomètre ou à inductance variable reliés à un indicateur ou enregistreur électrique.

L'étalonnage de couple-mètres de ce type nécessite l'emploi de bancs d'étalonnage permettant de reproduire l'unité de couple avec l'exactitude requise.

Cet article décrit deux bancs de ce type de capacité 50 Nm et 6 kNm dans lesquels un couple statique peut être obtenu à partir des grandeurs de base : longueur et force. Ces bancs sont du type à bras constant et charge variable.

Les deux bancs sont employés en tant qu'étalons avec une exactitude de 0.05 %.

1. General considerations

A force torque moment is the product of a quantity (length) expressed in the basic SI-unit of measurement - the meter - and another quantity (force) expressed in the derived SI-unit - the newton - consequently the SI-unit of torque moment is expressed in Nm.

Continued research work done in the Laboratories of the Timisoara Branch of the National Institute of Metrology in Bucharest [8], aiming at the development of

** National Institute of Metrology, Sos. Vitan-Bîrzesti 11, sector 4, R-75669 Bucharest 61, Romania.
direct loading deadweight standard machines [9] and the introduction of the SI-System [2], has resulted in two machines having capacities of 50 Nm and 6 kNm respectively which are mainly used for torque-dynamometer calibration whereby the static torque moment is reproduced from the two basic quantities, length and force [4, 6, 7].

The force component of the torque unit in these standard machines is provided by means of deadweights freely suspended from one end of a rigid beam. These weights are subjected to the local gravity acceleration which must be known in order to establish the exact value of the force applied. A slight upthrust of the surrounding air on the weights has also to be taken into account. The distance between the point of application of force and the fulcrum (axis of oscillation) is equal to the length of the torque arm.

Thus, a standard machine constructed on the above principle is composed - schematically - of a support on which the torque-dynamometer to be calibrated is mounted, an equal-arm beam and a pair of loading yokes with deadweights applied to one or the other end of the beam in order to produce positive or negative moments. Loading-unloading of the yoke is carried out by means of a movable rack supporting the deadweights.

An analysis of feasible solutions of construction [3, 4] has shown that an optimum loading scheme should ensure progressive loading steps, complete separation between the freely suspended yoke and the frame of the machine, as well as balancing of the beam in horizontal position for all torque steps used. The new types of torque measuring standard machines as reported below were developed on the basis of these requirements.

2. The 50 Nm standard machine

The 50 Nm standard machine [1] is illustrated by the drawing figure 1, the left part of which is a view from the end of the beam and the right part a front view. The machine is composed of a frame 1 with a movable support 10 for the torque dynamometer 12 to be calibrated. The latter is secured by means of the coupling flanges 11. A hand-wheel, not shown in the figure, displaces by means of a worm-gear the support 10 to allow the fitting of torque-dynamometers up to 350 mm in length.

The column 2 supports the beam 3 which can be arrested and have its central knife-edge 19 lifted off the bearing plane 18 by the device 13. The load is applied in steps to the beam through the buckles 4 from two racks 5 containing the deadweights 14.

Both weight racks are restrained and guided by the pulleys 7 between two cylindrical columns 25 mounted on the supports 6. The racks can be lowered vertically by a hand-wheel attached to the worm 27 forming part of the loading mechanism 8 which allows deposition of the weights on the tray 15 of the rod 24 without oscillation. The left part of figure 1 shows all the weights deposited on the rack whilst the right part of the figure shows all the weights supported on the suspended tray.

The weights are suspended on bearings 23 and end knife edges 20. The sensitivity of the beam is adjusted by the nut 21 and its balance by the nuts 22. The distance between the central knife-edge and each of the external knife edges is adjusted to 500 ± 0.1 mm.

Bulletin OIML N° 89 - Décembre 1982
Figure 2
Frontal view of the 50 Nm standard

Figure 3
Lateral view of the 50 Nm standard
The loading racks are each provided with twelve weights for 2 N load steps, four weights for 4 N load steps and six weights for 10 N load steps so that 22 steps of successive torque values up to a total of 50 Nm can be achieved. The gravity effects on both the suspended rods and trays are balanced and do not contribute to the load.

The machine is provided with a balancing device allowing the horizontal position of the beam to be reached irrelevant of the torque applied. This device comprises a worm-axle system actuated by an electric motor which is brought into operation for each torque step applied so as to maintain the beam perfectly horizontal during measurements. The horizontal position is monitored by means of an indicator which is not shown in the figure.

For torque-dynamometer calibration, the required coupling flanges are selected and secured into the standard machine. The beam is then adjusted and balanced for the measurements to be effected and locked in position by means of the arrestment device. The torque-dynamometer is installed with one end in the beam flange, the other being secured to the flange of the balancing device by adjusting its movable support. Due consideration should be given to concentric mounting. While the torque-dynamometer is mounted and centered, the beam is unlocked by lowering the central knife edge onto its bearing plane, without however loading the end knife-edges. Then the load steps are established depending on the capacity of the torque-dynamometer and the beam is completely freed while the end knife-edges are loaded up to the initial loading step and the inclination of the beam due to the applied weights is recorded.

The balancing device is then electrically actuated till an identical moment of opposite direction is obtained, corresponding to the horizontal position of the beam, while the angle of torsion of the torque-dynamometer remains constant. The output reading of the torque-dynamometer taken at the initial torque step applied is recorded and the next torque application is made by repeating the above operations. After the torque-dynamometer has been loaded up to the rated torque value, the output reading whilst unloading is recorded, the same operations being carried out in the reverse order. Figs. 2 and 3 show front and side views of the 50 Nm standard machine not operational, i.e. the dead weights are on the racks and the beam is lifted.

3. The 6 kNm standard machine

The 6 kNm standard machine is shown in fig. 4, side, front and top views [5]. The machine is composed of a frame (a lathe base) provided with a pair of strong supports and a pair of guide rails for horizontal movement of a saddle holding the balancing device and the electromechanical actuation device which also can be actuated by a hand-wheel.

The torque-dynamometers to be calibrated which can be of various lengths are mounted between the flanges by displacing the saddle by means of a rack and pinion (not shown) and a hand-operated wheel.

The torque moment is created by the equal-arm beam, the ends of which are fitted with a yoke and tray, which during calibration is loaded with deadweights from racks and, by means of the loading devices and 20. The side view in fig. 4 shows the yoke loaded with the deadweights, while the front view illustrates the machine not operational (weights on rack).

The beam is fitted with a central knife-edge supported on a bearing plane rigidly fixed to the support. The ends of the beam are fitted each with adjustable

* Designed by R. GARTNER and I. HANER.
knives and balancing nuts; the central nut 25 is used for sensitivity adjustments. The central knife-edge 21 and both end knife-edges 23 are located, by design, in the same horizontal plane.

Starting from the rest position the beam is lifted off its central bearing by means of the arrestment device 6 which first unloads the end knife-edges by lifting the yokes with the trays 17 and subsequently the beam. These operations are carried out by means of connecting brackets 7 and conical nuts (not shown) being moved in opposite directions by the right and left-hand threads on the arrestment device axle.

The electric motor-operated loading devices 19 and 20 permit deposition of deadweights 18 onto the trays 17, in two ways, according to requirements, by lowering the racks 8 and 9. Depending on the capacity of the torque-dynamometer to be calibrated, the pair of racks A or B is mounted into the machine as follows:

- racks A provided with a series of weights called “small” for 15 loading steps up to 1 kNm,
- racks B provided with a series of weights called “great” for 14 loading steps up to 6 kNm.

Since the length of the load arm is 1000 ± 0.1 mm (distance between central knife-edge and one end knife-edge) the moment values obtained are numerically equal to the values of deadweights applied.

The balancing device 11 is composed of a lever system (not shown), actuated by an electric motor *, by which the torsion stress is transmitted to the fixing flange 13 at one end of the torque-dynamometer 15 to be calibrated. The other end of the torque-dynamometer is secured to a second flange 13, the distance between the two flanges being adjusted by means of the saddle 10. The fixing flanges 13 are located coaxially with the central knife-edge.

One of the beam ends is fitted with a photoelectric cell system 26 ** allowing for the automatic adjustment of the beam in horizontal position irrelevant of the value of the loading steps applied to the torque-dynamometer.

The torque-dynamometer to be calibrated is mounted and centered between the flanges 13 with simultaneous actuation of the arrestment device 6 by means of which the beam is lowered onto the central knife-edge. Following this, one of the trays is loaded with the initial load step by actuation of rack 8, which by lowering deposits weights on the tray 17. Because of the moment generated the beam shows a tendency to incline toward the side of the weights applied; this tendency being immediately sensed by the photoelectric cell control system 26. When the balancing device 11 is actuated the system 26 automatically brings the beam back to its horizontal position, while the angle of torsion of the torque-dynamometer remains constant. In this situation the output reading of the torque-dynamometer is recorded and the next loading step is applied.

It should be noted that measurement of the relevant values during unloading is also possible with the standard machine, the same operations being performed in the reverse direction. Calibration can be made, if required, for the opposite loading direction too (negative moment), by loading the opposite beam arm.

Fig. 5 shows a general view of the 6 kNm standard machine with small weights (rack A) mounted, and fig. 6 with small weights placed on rack A and yoke unloaded. The rack B is shown to the right with holders for large weights B. The calibration of a Hottinger torque-dynamometer is shown in fig. 7. The mounting of the torque-dynamometer into the standard machine is shown in fig. 8.

* Developed by M. CHEVERESAN and I. MATKOVIȚS.
** Developed by I. SMEJKAL, V. BURCA, M. POMIRLAN, I. PAZSIȚIKA and A. KAUREK.
Figure 5
General view of the 6 kNm standard

Figure 6
Small weights deposited on rack A, yoke unloaded
Figure 7 — Calibration of a Hottinger transducer

Figure 8 — Detail of transducer mounting
4. Torque moment reproduction accuracy

From the relation defining moment \(M = LG \), where \(M = \) torque moment, \(L = \) torque arm length, and \(G = \) force applied to the arm, the maximum relative error of torque moment measurements is obtained from [3]

\[
\frac{\Delta M}{M} = \frac{\Delta L}{L} + \frac{\Delta G}{G}
\]

The length of the beam arm was determined with an accuracy of \(\pm 0.1 \text{ mm} \), so that the relative error for \(L = 500 \text{ mm} \) or \(L = 1000 \text{ mm} \), is respectively

\[
\frac{\Delta L'}{L} = \pm 0.1 \text{ on } 500 = \pm 2 \cdot 10^{-4} \text{ and } \frac{\Delta L'}{L} = \pm 0.1 \text{ on } 1000 = \pm 1 \cdot 10^{-4}
\]

The influence of knife-edge displacement because of beam deflection under load applied, is obtained by taking a maximum deflection of 2.5 mm for the 500 mm lever arm and 5 mm for the 1000 mm arm. In this case, the length of the horizontal projection of the deflected arm is shorter by less than 0.025 mm, or 0.05 mm than the actual arm length, while relative error is:

\[
\frac{\Delta L''}{L} \leq \frac{0.025}{500} = 0.5 \cdot 10^{-4} \text{ and } \frac{\Delta L''}{L} \leq \frac{0.05}{1000} = 0.5 \cdot 10^{-4}
\]

The influence on the arm length at 20 °C of a temperature change from 20 °C can be estimated by assuming a maximum variation of \(\pm 2 \text{ °C} \) and using the coefficient of expansion for the steel \(\alpha = 1.23 \cdot 10^{-5} \text{ °C}^{-1} \).

The resulting relative error is then:

\[
\frac{\Delta L'''}{L} = 1.23 \cdot 10^{-5} (\pm 2) = \pm 0.25 \cdot 10^{-4}
\]

Thus, the total relative error for 500 mm or 1000 mm arm length, may be estimated to be:

\[
\frac{\Delta L}{L} = \sqrt{\left(\frac{\Delta L'}{L}\right)^2 + \left(\frac{\Delta L''}{L}\right)^2 + \left(\frac{\Delta L'''}{L}\right)^2}
\]

which gives

\[
\frac{\Delta L}{L} \leq 2.08 \cdot 10^{-4} \text{ and } \frac{\Delta L}{L} \leq 1.15 \cdot 10^{-4}
\]

The deadweight calibration was made [1][3] under the most disadvantageous conditions to an accuracy of \(\pm 0.00005 \text{ N} \) for a load of 2 N with the 50 Nm machine, and to \(\pm 0.05 \text{ N} \) for a load of 500 N with 6 kNm machine, resulting in the following relative errors

\[
\frac{\Delta G}{G} = \pm \frac{0.00005}{2} = \pm 0.25 \cdot 10^{-4} \text{ and } \frac{\Delta G}{G} = \pm \frac{0.05}{500} = \pm 1 \cdot 10^{-4}
\]
The theoretical accuracy of torque moment reproducibility for the 50 Nm standard machine is thus
\[
\frac{\Delta M}{M} = \frac{\Delta L}{L} + \frac{\Delta G}{G} = 2.08 \times 10^{-4} + 0.25 \times 10^{-4} = 2.33 \times 10^{-4} = 0.0233 \%
\]
and for the 6 kNm standard machine:
\[
\frac{\Delta M}{M} = 1.15 \times 10^{-4} + 1 \times 10^{-4} = 2.15 \times 10^{-4} = 0.0215 \%
\]

During operation, however, the actual accuracy is affected by friction and eccentricity. For this reason, and to ensure a certain safety factor, the practical accuracy is being assumed to be equal to slightly more than twice these values, i.e. 0.05 %.

5. Technical characteristics and performances

The technical and metrological performances of the standard machines developed are summarized, in the following table.
<table>
<thead>
<tr>
<th>No.</th>
<th>Designation of characteristic</th>
<th>Values, specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 Nm machine</td>
</tr>
<tr>
<td>1.</td>
<td>Minimum moment</td>
<td>1 Nm</td>
</tr>
<tr>
<td>2.</td>
<td>Maximum moment</td>
<td>50 Nm</td>
</tr>
<tr>
<td>3.</td>
<td>Torque steps obtainable</td>
<td>multiples of 1;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2; 5 Nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>racks A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Sign of torque moment</td>
<td>positive or negative</td>
</tr>
<tr>
<td>5.</td>
<td>Direction of application</td>
<td>loading or unloading</td>
</tr>
<tr>
<td>6.</td>
<td>Length of load arm</td>
<td>2 × 500 mm</td>
</tr>
<tr>
<td>7.</td>
<td>Load steps applied</td>
<td>multiples of 2;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4; 10 N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Distance between fixing flanges</td>
<td>50 ... 350 mm</td>
</tr>
<tr>
<td>9.</td>
<td>Distance between guide rails and axis of torque-dynamometer to be calibrated</td>
<td>400 mm</td>
</tr>
<tr>
<td>10.</td>
<td>Actuation of loading devices</td>
<td>hand-operated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 kW; 1460 r/min</td>
</tr>
<tr>
<td>12.</td>
<td>Accuracy of accomplishment of torque arm length</td>
<td>± 0.1 mm</td>
</tr>
<tr>
<td>13.</td>
<td>Relative deadweight calibration accuracy</td>
<td>0.25 · 10⁻⁴</td>
</tr>
<tr>
<td>14.</td>
<td>Torque reproduction accuracy</td>
<td>5.10⁻⁴ = 0.05 %</td>
</tr>
<tr>
<td>15.</td>
<td>Temperature change permitted</td>
<td>20 ± 2 °C</td>
</tr>
</tbody>
</table>
References (papers in Romanian language)

ENSEIGNEMENT de la MÉTROLOGIE

LITTÉRATURE

Balances manométriques

Nous avons le plaisir d’annoncer la récente parution d’un ouvrage sur les balances manométriques :

The Pressure Balance. Theory and Practice
by R.S. DADSON, S.L. LEWIS, G.N. PEGGS
National Physical Laboratory (Grande-Bretagne), 290 pages

Ce livre traite d’une façon très complète des problèmes pratiques et théoriques associés à la construction, l’utilisation, les corrections et l’étalonnage des balances manométriques avec 178 références à des ouvrages concernant des mesures de pression, y compris d’autres types de manomètres.

Nous signalons à cette occasion, également, un ouvrage plus condensé publié précédemment :

The Pressure Balance. A practical Guide to its use
by Sylvia LEWIS and G.N. PEGGS
National Physical Laboratory, 63 pages
London, Her Majesty’s Stationery Office, 1979

PTB - Liste de publications

Le PTB vint de publier un fascicule contenant la liste des rapports et autres publications récentes établie par son service de publications :

Publications of the Physikalisch-Technische Bundesanstalt
compiled by Referat Schriftum, PTB-L-17
24 pages, Braunschweig, Juni 1982

Métrologie de masses

Nous avons reçu du Canada un fascicule en français et anglais traitant des problèmes théoriques associés à l’étalonnage de séries de poids étalons :

Progrès en métrologie des étalons de masse
(avec un historique)
par M. ROMANOWSKI et G. MIHAÏLOV
2 × 27 pages, 1re édition août 1981

Cette publication peut être obtenue, sans frais, auprès du Ministère de la Consommation et des Corporations du Canada, Direction de la Métrologie légale, Tunney’s Pasture, Ottawa (Canada) K1A OC9.
METROLOGY EDUCATION

LITERATURE

Pressure balances

We have pleasure in announcing a recently published book:

The Pressure Balance. Theory and Practice
by R.S. DADSON, S.L. LEWIS, G.N. PEGGS
National Physical Laboratory (Great Britain), 290 pages

This book gives a complete, practical and theoretical treatment of all essential problems associated with the construction, use, correction and calibration of pressure balances as well as 178 references to publications dealing with pressure measurement including other types of manometers.

We take the opportunity to remind about another more condensed book previously published:

The Pressure Balance. A practical Guide to its use
by Sylvia LEWIS and G.N. PEGGS
National Physical Laboratory, 63 pages
London, Her Majesty’s Stationery Office, 1979

PTB - List of publications

The PTB laboratories has issued a booklet containing the list of reports and other recent publications:

Publications of the Physikalisch-Technische Bundesanstalt
compiled by Referat Schriftum, PTB-L-17
24 pages, Braunschweig, Juni 1982

Mass metrology

We have received from Canada a booklet in French and English dealing with the theoretical problems of the calibration of sets of mass standards:

New developments in the metrology of mass standards
(with historical introduction)
by M. ROMANOWSKI and G. MIHAILOV
2 x 27 pages, first edition, August 1981

This publication is available, without charge, from Department of Consumer and Corporate Affairs Canada, Legal Metrology Branch, Tunney’s Pasture, Ottawa, Canada K1A OC9.
INFORMATION

SEMINAR ON PRECISION MEASURING INSTRUMENTS IN ENGINEERING INDUSTRIES

Dresden, 20-24 September 1982

This seminar was organised by the United Nations Economic Commission for Europe and was essentially devoted to mechanical engineering metrology.

OIML was represented by Mr LIERS, the CIML member of the German Democratic Republic.

We are overleaf reproducing a list of the papers presented, reprints of which may be requested from

United Nations
Economic Commission for Europe
Palais des Nations
CH-1211 Genève 10
Switzerland.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title of paper</th>
<th>Author(s)</th>
<th>Country or organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.1</td>
<td>Optical procedures for the measurement of surface roughness</td>
<td>R.-J. AHLERS</td>
<td>Federal Republic of Germany</td>
</tr>
<tr>
<td>R.2</td>
<td>Control of the accuracy of a multi-co-ordinate measuring machine</td>
<td>W. KNAPP</td>
<td>Switzerland</td>
</tr>
<tr>
<td>R.3</td>
<td>The use of co-ordinate measuring devices for the measurement of revolving surfaces</td>
<td>S. PAULY and T. KIRCHNER</td>
<td>Federal Republic of Germany</td>
</tr>
<tr>
<td>R.4</td>
<td>Unit transfer to industrial length-measuring devices on the basis of the metre definition</td>
<td>K. SCHMIDT</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.5</td>
<td>Requirements on inter-changeability and measuring engineering for the automated manufacture of high-quality products in engineering industries</td>
<td>H. TRUMPOLD</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.6</td>
<td>Problems of parameters, reference systems and measuring methods for form deviations explained by means of examples of cylindricity</td>
<td>E. HELDT</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.7</td>
<td>The development of automation and precision in optical instrumentation</td>
<td>K. MUTZE and H. POHLACK</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.8</td>
<td>Application of light and electron-optical instruments for measuring small dimensions in microolithography</td>
<td>R. PLONTE</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.9</td>
<td>Application of photogrammetry in industrial metrology</td>
<td>K. SZANGOLIES and K. REGENSBURGER</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.10</td>
<td>Application of measuring systems to improve the quality of grinding machines</td>
<td>W. BAHMANN, J. WALDE and C. LIEBERWIRTH</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.11</td>
<td>The increase in production and quality by means of precision-measuring instruments and micro-computers - an education and training problem</td>
<td>D. HOFMANN</td>
<td>International Measurement Confederation (IMEKO)</td>
</tr>
<tr>
<td>R.12</td>
<td>Computer-aided co-ordinate measurement for quality control</td>
<td>W. LOTZE and P. VOGEL</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.13</td>
<td>Problem-oriented programming languages - a support for effective computer application to co-ordinate measurements</td>
<td>G. STILLER, M.W. HARTMANN and H. LOEPER</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.14</td>
<td>Applications of engineering surveying in the construction of machines and installations</td>
<td>F. DEUMLICH and H. WERNER</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.15</td>
<td>Equipment for the measurement of blanks and its application in automated production systems</td>
<td>A. SEDLAR</td>
<td>Czechoslovakia</td>
</tr>
<tr>
<td>R.16</td>
<td>Integration of control of the production process and product quality in automated engineering production</td>
<td>A. SEVCIK</td>
<td>Czechoslovakia</td>
</tr>
<tr>
<td>Symbol</td>
<td>Title of paper</td>
<td>Author(s)</td>
<td>Country or organization</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>R.17</td>
<td>Integration of measurement and control in the operating process of a grinding machine</td>
<td>M. RUZICKA</td>
<td>Czechoslovakia</td>
</tr>
<tr>
<td>R.18</td>
<td>The State system of metrology and the commercial metrology service in the G.D.R.</td>
<td>H.W. LIERS</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.19</td>
<td>Holographic measuring techniques in the machine industry</td>
<td>Z. FUZESSY</td>
<td>International Measurement Confederation (IMEKO)</td>
</tr>
<tr>
<td>R.20</td>
<td>Measuring systems, techniques and applications of photogrammetry in industry and research</td>
<td>G. HELI</td>
<td>Federal Republic of Germany</td>
</tr>
<tr>
<td>R.21</td>
<td>The role of quality control and its connection to the information processes in flexible manufacturing</td>
<td>G. HERMANN and L. NEMES</td>
<td>Hungary</td>
</tr>
<tr>
<td>R.22</td>
<td>Electronic measuring equipment in engineering industries and its development</td>
<td>R. FRANCESCHI</td>
<td>Italy</td>
</tr>
<tr>
<td>R.23</td>
<td>An integrated system of computer aided design and production</td>
<td>H. WILLEM and D. MULLER</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.24</td>
<td>Application of measuring systems for ensuring the geometric and technological quality of part manufacture in manufacturing cells used in low-attended operations</td>
<td>A. RUSSIG and R. GRABNER</td>
<td>German Democratic Republic</td>
</tr>
<tr>
<td>R.25</td>
<td>In-process measurement of workpiece and tools</td>
<td>T. PFEIFER, A. FURST and W. VOLLAARD</td>
<td>International Measurement Confederation (IMEKO)</td>
</tr>
<tr>
<td>R.26</td>
<td>Use of precision transducers («Inductosyn» type) for measuring movement in numerically-controlled machine tools</td>
<td>N.A. SMIRNOV and A.N. CHERNOGORSKY</td>
<td>Union of Soviet Socialist Republics</td>
</tr>
<tr>
<td>R.28</td>
<td>The new Swedish organization for metrology standards and calibration and its cooperation with industry</td>
<td>C. GORANSSON</td>
<td>Sweden</td>
</tr>
<tr>
<td>R.29</td>
<td>Contamination control in fine precision industries</td>
<td>R. KRATZEL</td>
<td>Federal Republic of Germany</td>
</tr>
<tr>
<td>R.30</td>
<td>Interpolation error of linear inductosyns in different operating conditions</td>
<td>V. DRAJEV, A. IVANTCHEV, D. GETZKOVSKA, I. KRIVORADEV, P. PENTSHEV and T. KANTSHEVA</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>R.31</td>
<td>New technical solutions by application of induction transducers</td>
<td>D. GETZKOVSKA and P. SHOLZ</td>
<td>Bulgaria and the German Democratic Republic</td>
</tr>
<tr>
<td>R.32</td>
<td>In situ metrology system for a large CNC diamond turning machine</td>
<td>W.J. WILLS-MOREN</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>R.33</td>
<td>Production, imports and exports of professional precision instruments, broken down by commodity groups, for selected countries, 1975-1979 (statistical data)</td>
<td>ECE secretariat</td>
<td></td>
</tr>
</tbody>
</table>
A number of research programmes within the field of reference materials and applied metrology has been launched by the Commission of the European Communities.

Details are given in the status report for 1981 entitled "Programme on reference materials and applied metrology" which may be purchased from the Office for official publications of the European Communities, Batiment Jean Monnet, Luxembourg.

From the index of this report we are below reproducing the titles of the research programmes within the field of applied metrology. The publication also gives details of more than 40 other subjects related to reference materials among which one may mention comparative measurements of hardness scales and reference gas mixtures for analyses related to pollution.

GEOMETRICAL & MECHANICAL METROLOGY

Intercomparison of volumetric measures (portable measures)
Intercomparison of large proving tanks
Intercomparison of force standards
Intercomparison of differential pressure measurements at high line pressure
Intercomparison and calibration of vacuum gauges in the range 8×10^{-3} to 8×10^{-2} Pa
Reference helium leaks
Intercomparison of three accelerometers
Automation of gauge blocks calibration
Three coordinate measurements intercomparison
Intercomparison of solid density standards

FLUID FLOW MEASUREMENTS

Intercomparison of high-pressure gas flow test facilities
Development of a transfer standard for hot water flow measurements
Orifice plate discharge coefficient
Study of the correlation of calibration curves at low pressure and high pressure of turbine gas meters
Calibration of sonic nozzles as transfer standards for high pressure gas flow measurements
Characterisation of performance of a pipe-prover and intercomparison of measurements
Intercomparison of liquid petroleum gas meter test facilities
Investigation of the stability of turbine meters for heat metering

TEMPERATURE & HUMIDITY

Sealed cell for the temperature at the melting point of sodium
Gallium sealed cells
Intercomparison of noble metal thermocouples between 1 000 °C and 1 600 °C
Improvement of standards for industrial temperature measurement above 1 500 °C
Low temperature dew point hygrometer
Medium range temperature dew point hygrometer
Rationalisation of the metrological control of moisture meters in service
OPTICAL METROLOGY

Development of a Deuterium lamp as a transfer standard for spectral radiance
Determination of the ratio of luminous flux of discharge lamps to the luminous flux of reference incandescent lamps

ELECTRICAL & MAGNETIC MEASUREMENT

Intercomparison of ac electric power measurements
Intercomparison measurements of thermal ac/dc transfer standards
Manufacturing and calibration of multijunction ac/dc thermal convertors
Intercomparison of the calibration of an ac and of a dc voltage divider
Intercomparison of electrical resistance measurements
Intercomparison measurements of capacitance and loss factors at high voltages
Intercomparison of precise differential-phase measurements
Development of a precision broadband coaxial noise source at 700 K noise temperature and in a frequency range of 0.1 GHz to 10 GHz
Intercomparison of radio frequency and microwave power flux density monitors
Pressure sensitivity calibration of microphones by the reciprocity technique
Intercomparison of measurements on ear protectors by subjective and objective methods
Study and synthesis of the measurements of electric perturbations in the low voltage power lines in the countries of the European Community
Intercomparison of testing sites for motor vehicles by means of a reference generator of electromagnetic noise
Precise magnetic measurements on electrical sheet steel
Time synchronisation via OTS-2
Calibration of ultrasonic transducer sensitivity and power by laser interferometry
Development of ultrasonic standard transducers for the frequency range 1 MHz to 10 MHz
Preliminary evaluation of two types of small diameter hydrophones
REUNIONS

Groupes de travail

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Dates</th>
<th>Lieux</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 11 - Sr 3</td>
<td>Balances manométriques</td>
<td>22-24 févr. 1983 (provisoire)</td>
</tr>
<tr>
<td>SP 5 - Sr 2</td>
<td>Schémas de hiérarchie des étalons de volume</td>
<td>28 févr.-4 mars 1983</td>
</tr>
<tr>
<td>SP 5 - Sr 3</td>
<td>Mesures de volumes de laboratoires</td>
<td></td>
</tr>
<tr>
<td>SP 5 - Sr 20</td>
<td>Méthodes et dispositifs de vérification des instruments de mesure de fluides</td>
<td>2e trimestre 1983</td>
</tr>
<tr>
<td>SP 16 - Sr 2</td>
<td>Laboratoires secondaires d’étalonnage en dosimétrie</td>
<td>25-27 avril 1983</td>
</tr>
<tr>
<td>SP 12 - Sr 6</td>
<td>Compteurs d’énergie thermique</td>
<td>31 mai-2 juin 1983</td>
</tr>
<tr>
<td>SP 19 - Sr 2</td>
<td>Machines d’essai des matériaux</td>
<td>13-15 juin 1983 (provisoire)</td>
</tr>
<tr>
<td>SP 27</td>
<td>Principes généraux de l’utilisation des matériaux de référence en métrologie légale</td>
<td>2e trimestre 1983</td>
</tr>
<tr>
<td>SP 7 - Sr 2</td>
<td>Généralités. Dispositifs électroniques (mesure des masses)</td>
<td>2e trimestre 1983</td>
</tr>
<tr>
<td>SP 7 - Sr 4</td>
<td>Instruments de pesage à fonctionnement non automatique</td>
<td></td>
</tr>
<tr>
<td>SP 30</td>
<td>Mesures physico-chimiques</td>
<td></td>
</tr>
<tr>
<td>SP 30 - Sr 2</td>
<td>Conductométrie</td>
<td>26 sept. 1er oct. 1983</td>
</tr>
<tr>
<td>SP 30 - Sr 4</td>
<td>Hygrométrie des matériaux solides</td>
<td></td>
</tr>
<tr>
<td>SP 30 - Sr 9</td>
<td>Viscosimétrie</td>
<td></td>
</tr>
<tr>
<td>SP 30 - Sr 10</td>
<td>Analyse des gaz</td>
<td></td>
</tr>
<tr>
<td>SP 5 - Sr 16</td>
<td>Compteurs d’eau</td>
<td>automne 1983 (provisoire)</td>
</tr>
<tr>
<td>SP 22</td>
<td>Principes du contrôle métrologique</td>
<td>automne 1983 (provisoire)</td>
</tr>
</tbody>
</table>

Groupe de travail mixte BIPM-CEI-HSO-OIML :
« Vocabulaire International de Métrologie »

Dix-neuvième réunion du Comité International de Métrologie Légale

Séminaire OIML sur les produits préemballés suivi des réunions du SP 20 Produits préemballés (et de ses Secrétariats-rapporteurs)
CENTRE DE DOCUMENTATION

Documents reçus au cours du 4e trimestre 1982

ORGANISATION INTERNATIONALE DE NORMALISATION — ISO

Documents généraux (fr. et angl.)

Liaisons (4e édition, 1982)
Catalogue 1982, Supplément 2 (Juillet 1982)
Directives pour les travaux techniques de l'ISO (13e édition, 1982)
Répertoire des Organismes internationaux à activités normatives (3e édition, 1982)
Programme à long terme de l'ISO pour le développement pour 1983-1985 ratifié par
le Conseil de l'ISO, sept. 1982
Manuel pour le développement 2 : Le fonctionnement d'un système de certification
(1re édition, 1982)
Normalisation et développement, 1979
Avantages de la Normalisation, 1982

ISO Normes (fr. et angl.):
ISO 156-1982 : Matériaux métalliques - Essai de dureté - Contrôle des machines
d'essai de dureté Brinell
ISO 409/1-1982 : Matériaux métalliques - Essai de dureté - Tableaux des valeurs
de dureté Vickers pour utilisation dans les essais effectués sur surfaces pla-
nes - Partie 1 : HV 5 à HV 100
ISO 410-1982 : Matériaux métalliques - Essai de dureté - Tableaux des valeurs de
dureté Brinell pour utilisation dans les essais effectués sur surfaces planes
ISO 3719-1982 : Machines à équilibrer - Symboles pour les tableaux de commande
ISO 6251-1982 : Gaz de pétrole liquéfiés - Action corrosive sur le cuivre - Essai
t à la lame de cuivre
ISO 6507/1-1982 : Matériaux métalliques - Essai de dureté - Essai Vickers - Partie 1 :
HV 5 à HV 100
ISO 6527-1982 : Centrales nucléaires - Échanges de données de fiabilité - Critères
généraux
ISO 7145-1982 : Détermination du débit des fluides dans les conduites fermées de
section circulaire - Méthode par mesure de la vitesse en un seul point

ORGANISATION DES NATIONS UNIES POUR L'EDUCATION, LA SCIENCE ET LA CULTURE — UNESCO

L'informatique, facteur vital de développement, 1982
Nouveau périodique d'information :
Enseignement technique et professionnel N° 2/1982

COMMISSION ELECTROTECHNIQUE INTERNATIONALE — CEI

Complément au catalogue des publications (Juin 1982)
2e complément au catalogue des publications (Sept. 1982)

ORGANISATION DES NATIONS UNIES POUR L'ALIMENTATION ET L'AGRICULTURE / ORGANI-
SATION MONDIALE DE LA SANTE — FAO/OMS

Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission
CAC/RS 1-1969 : Norme Générale Internationale recommandée pour l'étiquetage
des denrées alimentaires préemballées

INTERNATIONAL INFORMATION CENTRE FOR TERMINOLOGY — INFOTERM

Nouveau périodique reçu :
Term net News N° 4/5 - 1982

Bulletin OIML N° 89 - Décembre 1982
COMMISSION DES COMMUNAUTES EUROPEENNES — CCE

Nouveau périodique reçu :
Bulletin de renseignements documentaires : depuis A26, 1982

Bureau Communautaire de référence
bcr information : Programme on reference materials and applied metrology,
Status report 1981 (EUR 7811 EN, 1982)

CONSEIL D’ASSISTANCE MUTUELLE ECONOMIQUE — SEV

Ukazatel’ Standartov SEV, 1982

REPUBLIQUE FEDERALE D’ALLEMAGNE

Physikalisch- Technische Bundesanstalt
PTB-Prüfregeln Band 10 : Lagerbehälter in Form stehender Zylinder, Teil 2 :
Ergänzung (S. Raschke, 1982)
PTB-L-17 (Juni 1982) : PTB-Bericht, Schriften der PTB zusammengefasst vom Referat
Schrifttum

AUSTRALIE

Commonwealth Scientific and Industrial Research Organisation
Division of Applied Physics - Biennial Report (July 1979 - June 1981

AUTRICHE

Bundesamt für Eich- und Vermessungswesen
Amtsblatt für das Eichwesen : Nr 1-4/1982 :
Mitteilung Nr. 39 über das Zeitsignal des Bundesamt für Eich-und Vermessungs-
wesen (BEV), mai 1982

CUBA

Comite Estatal de Normalizacion, Aseguramiento metrologico :
NC 90-01-10 (3-1981) : Placas planas de vid ; Metodos y medios de verificacion
NC 90-01-26 (3-1981) : Medios de medicion de longitud y de angulo ; clasificacion
general, Terminos y definiciones
NC 90-04-13 (3-1981) : Recipientes cilindricos horizontales con cabezas planas circu-
lares ; Metodos y medios de verificacion (Metodo geometrico)
NC 90-06-03 (6-1981) : Instrumentos de paso comerciales e industriales ; Clasifi-
cacion general
NC 90-06-18 (6-1981) : Bascula de mesa « y ara » BM - 50 ; Especificaciones de
calidad
NC 90-06-19 (6-1981) : Bascula de tolva con Indicador e integrador ; metodos y
medios de verificacion
NC 90-07-04 (6-1981) : Manometros, vacuometros y manovacuometros registradores
de deformacion elasta ; metodos y medios de verificacion
NC 90-09-07 (6-1981) : Maquina de ensayo de dureza super-Rockwell ; metodos
essayo de dureza super-Rockwell
NC 90-13-01 (9-1981) : Densimetros y areometros de trabajo ; clasificacion
NC 90-13-02 (9-1981) : Refractometros ; clasificacion
NC 90-13-17 (9-1981) : Densimetros y areometros ; Reglas generales para efectuar
NC 90-13-18 (9-1981) : Conductimetros ; clasificacion
NC 90-14-02 (3-1981) : Millivoltimetros pirometricos ; Metodos y medios de verifica-
cion
NC 90-15-21 (6-1981) : Ohmimetros ; Metodos y medios de verificacion
NC 86-02 (3-1981) : Cereales ; granos y harinas ; Muestreo
NC 92-27 (3-1981) : Control de la calidad ; Inspeccion por atributos ; planes
de muestreo secuenciiales
NC 92-28 (3-1981) : Control de la calidad ; Numeros preferidos y series de
numeros preferidos para los valores de entrada de las tablas estadisticas

Bulletin OIML N° 89 - Décembre 1982
DANEMARK
Justervæsenet
— Directives techniques danoises sur la métrologie de 1976 à 1981

FINLANDE
Suomen Standardisoimislitto

FRANCE
Bureau National de Métrologie
Rapport d’activité 1981
Réglementation métrologique
Arrêté du 8-2-1982 : Evaporateurs-répartiteurs de frais de chauffage

PAYS-BAS
Dienst van het IJKwezen
IJkwetgeving III : Aanverwante wetten (Sept. 1982)

POLOGNE
Polski Komitet Normalizacji Miar i Jakości
Dziennik Normalizacji i Miar : Nr 3 - 11-1982
Zarządzenia nr 173 z dnia 31-12-1981 r. w sprawie utraty mocy aktow prawnych
b. Prezesa Polskiego Komitetu Normalizacyjnego I. Prezesa Polskiego Komitetu Normalizacji I Miar

ROYAUME-UNI DE GRANDE-BRETAGNE ET D’IRLANDE DU NORD
National Physical Laboratory
NPL Report QU 48 (July 1978) : Electronic medical thermometers (by P.B. Coates)
NPL Report QU 64 (May 1982) : The design of a standards Laboratory for thermometry (by P.B. Coates)

SUEDE
Statens provningsanstalt
Svensk Måtplankalender 1982
Föreskrifter för icke automatiska vagar avsedda för krönning den 17-5-1982 :
SPFS 1982:7 Pendelvagar och pendelvagar kombinerade med andra vagar
SPFS 1982:8 Över -och undervagar
SPFS 1982:9 Elektroniska vagar
SPFS 1982:10 Fjädervagar
SPFS 1982:11 Vagar för satsvägnings
SPFS 1982:12 Specialvagar
SPFS 1982:13 Skjutviktsvagar i noggrannhetsklass 3 och 4
SPFS 1982:14 Likarmade vagar
SPFS 1982:15 Decimalvagar i noggrannhetsklass 3 och 4

SUISSE
Mettrler Wägelexikon - Praktischer Leitfaden der wägetechnischen Begriffe (L. Bietry, M. Kochsieck - Mai 1982)

TCHECOSLOVAQUIE
INSYMET 82
6. Medzinarodné Symposium Metrologie (Bratislava 1982)

Bulletin OIML N° 89 - Décembre 1982
Gosudarstvennyi Komitet SSSR po Standartam

State System for ensuring the uniformity of measurements:
- Gost 8.005-82: Continuous balance conveyor. Methods and means of verification
- Gost 8.031-82: State primary Standard and state verification schedule for means of measuring neutron flux and its density
- Gost 8.140-82: State primary standard and state verification schedule for means of measuring heat conduction of solids in the range from 0.1 to 5 W at temperatures from 90 to 500 K and in the range from 5 to 20 W at temperatures from 300 to 1100 K
- Gost 8.434-81: Humidity of grain and its processing products. Method of carrying out measurements by dielectric and resistive moisture gauges
- Gost 8.452-82: Radioisotope X-ray devices. Methods and means for verification
- Gost 8.453-82: Balance for static weighing. Methods and means for verification
- Gost 8.454-82: State special standard and state verification schedule for means of measuring quantity of heat of solution and heat of reactions
- Gost 8.455-82: Measuring vibrating wire uniform force transducers type. Methods and means for verification
- Gost 8.456-82: Measuring vibrating wire fluid level transducers type. Methods and means for verification
- Gost 8.457-82: State primary standard and state verification schedule for means of measuring specific conductivity of solutions of electrolytes within the range from 10^{-3} to 10^{2} S/m
- Gost 8.459-82: Pitch difference measuring instruments. Methods and means for verification
- Gost 8.461-82: (ST SEV 1058-78): Resistive temperature transducers. Methods and means for verification
- Gost 8.465-82: Actual frequency of limited accuracy. Methods and means for verification
- Gost 8.466-82: Mechanical marine chronometers. Methods and means for verification
- Gost 8.467-82: Normative technical documents relating to measurement procedures. Requirements to layout scope and wording
- Gost 8.469-82: Scale weighers of continuous action. Methods and means of verification
<table>
<thead>
<tr>
<th>R.I. N°</th>
<th>Vocabulaire de métrologie légale (termes fondamentaux) (édition bilingue français/anglais)</th>
<th>Secrétariats</th>
<th>Année d'édition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poids cylindriques de 1 gramme à 10 kilogrammes (de la classe de précision moyenne)</td>
<td>Belgique</td>
<td>1973</td>
</tr>
<tr>
<td>2</td>
<td>Poids parallélépipédiques de 5 à 50 kilogrammes (de la classe de précision moyenne)</td>
<td>Belgique</td>
<td>1973</td>
</tr>
<tr>
<td>3</td>
<td>Réglementation métrologique des instruments de pesage à fonctionnement non automatique</td>
<td>R.F. d'Allemagne et France</td>
<td>1978</td>
</tr>
<tr>
<td>4</td>
<td>Fioles jaugées (à un trait) en verre</td>
<td>Royaume-Uni</td>
<td>1970</td>
</tr>
<tr>
<td>5</td>
<td>Compteurs de volume de liquides (autres que l'eau) à chambres mesureuses</td>
<td>R.F. d'Allemagne et France</td>
<td>1981</td>
</tr>
<tr>
<td>6</td>
<td>Prescriptions générales pour les compteurs de volume de gaz</td>
<td>Pays-Bas et R.F. d'Allemagne</td>
<td>1978</td>
</tr>
<tr>
<td>7</td>
<td>Thermomètres médicaux à mercure, en verre, avec dispositif à maximum</td>
<td>R.F. d'Allemagne</td>
<td>1978</td>
</tr>
<tr>
<td>8</td>
<td>Méthode étalon de travail destinée à la vérification des instruments de mesurage du degré d'humidité des grains</td>
<td>R.F. d'Allemagne</td>
<td>1970</td>
</tr>
<tr>
<td>9</td>
<td>Vérification et étalonnage des blocs de référence de dureté Brinell</td>
<td>Autriche</td>
<td>1970</td>
</tr>
<tr>
<td>10</td>
<td>de dureté Vickers</td>
<td>Autriche</td>
<td>1970</td>
</tr>
<tr>
<td>11</td>
<td>de dureté Rockwell B</td>
<td>Autriche</td>
<td>1970</td>
</tr>
<tr>
<td>12</td>
<td>de dureté Rockwell C</td>
<td>Autriche</td>
<td>1970</td>
</tr>
<tr>
<td>14</td>
<td>Saccharimètres polarimétriques</td>
<td>R.F. d'Allemagne</td>
<td>1978</td>
</tr>
<tr>
<td>15</td>
<td>Instruments de mesure de la masse à l'hectolitre des céréales</td>
<td>R.F. d'Allemagne</td>
<td>1970</td>
</tr>
<tr>
<td>16</td>
<td>Manomètres des instruments de mesure de la tension artérielle</td>
<td>Autriche</td>
<td>1970</td>
</tr>
<tr>
<td>17</td>
<td>Manomètres - vacuomètres - manovacuomètres - indicateurs (instruments usuels)</td>
<td>U.R.S.S.</td>
<td>1981</td>
</tr>
<tr>
<td>18</td>
<td>Pyromètres optiques à filament disparaissant</td>
<td>U.R.S.S.</td>
<td>1970</td>
</tr>
</tbody>
</table>

Bulletin OIML N° 89 - Décembre 1982

20 — Poids des classes de précision E₁ E₂ F₁ F₂ M₁ de 50 kg à 1 mg Belgique 1973

21 — Taximètres R.F. d’Allemagne 1973

22 — Alcoométrie France 1973
 — Tables alcoométriques France 1975

23 — Manomètres pour pneumatiques U.R.S.S. 1973

24 — Mètre étalon rigide pour Agents de vérification Inde 1973

25 — Poids étalons pour Agents de vérification Inde 1977

26 — Seringues médicales Autriche 1973

27 — Compteurs de volume de liquides autres que l’eau R.F. d’Allemagne 1973
 — Dispositifs complémentaires et France

28 — Réglementation - technique - des instruments de pesage à fonctionnement non-automatique R.F. d’Allemagne 1981
 et France

29 — Mesures de capacité de service Suisse 1973

30 — Mesures de longueur à bouts plans U.R.S.S. 1981

31 — Compteurs de volume de gaz à parois déformables Pays-Bas 1973

32 — Compteurs de volume de gaz à pistons rotatifs et compteurs de volume de gaz à turbine R.F. d’Allemagne 1973

33 — Valeur conventionnelle du résultat des pesées dans l’air B.I.M.L. 1973

34 — Classes de précision des instruments de mesurage U.R.S.S. 1974

35 — Mesures matérialisées de longueur pour usages généraux Belgique 1977
 et Hongrie

36 — Vérification des pénétrateurs des machines d’essai de duréité Autriche 1977

37 — Vérification des machines d’essai de duréité système Brinell Autriche 1977

38 — Vérification des machines d’essai de duréité système Vickers Autriche 1977

40 — Pipettes étalons pour Agents de vérification Inde 1977

41 — Burettes étalons pour Agents de vérification Inde 1977

42 — Poinçons de métal pour Agents de vérification Inde 1977

43 — Fioles étalons graduées en verre pour Agents de vérification Inde 1977

44 — Alcoomètres et aréomètres pour alcool France 1977
45 — Tonneaux et futaillles
46 — Compteurs d’énergie électrique active à branchem-
 ment direct
47 — Poids étalons pour le contrôle des instruments de
 pesage de portée élevée
48 — Lampes à ruban de tungstène pour l’étalonnage des
 pyromètres optiques
49 — Compteurs d’eau (destinés au mesurage de l’eau
 froide)
50 — Instruments de pesage totalisateurs continus à fonction-
 nement automatique
51 — Trieuses pondérales de contrôle et trieuses pondérales
 de classement
52 — Poids hexagonaux — Classe de précision ordinaire — de
 100 grammes à 50 kilogrammes
53 — Caractéristiques métrologiques des éléments réce-
 ptueurs élastiques utilisés pour le mesurage de la
 pression. Méthodes de leur détermination
54 — Echelle de pH des solutions aqueuses
55 — Compteurs de vitesse, compteurs mécaniques de
 distance et chronotachygraphes des véhicules automobiles — Réglementation métrologique
56 — Solutions-étalons, reproduisant la conductivité des
 électrolytes
57 — Ensembles de mesurage de liquidés autres que
 l’eau équipés de compteurs de volumes — Dispositions générales

Autriche 1977
France 1978
R.F. d’Allemagne et France 1978
U.R.S.S. 1978
Royaume-Uni 1977
Royaume-Uni 1980
Royaume-Uni 1980
Belgique et Royaume-Uni 1980
U.R.S.S. 1982
U.R.S.S. 1980
U.R.S.S. 1981
Pologne 1981
U.R.S.S. 1981
R.F. d’Allemagne et France 1982

DOCUMENTS INTERNATIONAUX
adoptés par le
Comité International de Métrologie Légale

D.I. N°
1 — Loi de métrologie
2 — Unités de mesure légales
3 — Qualification légale des instruments de mesurage
4 — Conditions d’installation et de stockage des comp-
 teurs d’eau froide
5 — Principes pour l’établissement des schémas de
 hiérarchie des instruments de mesure

BIML 1975
BIML 1978
BIML 1979
Royaume-Uni 1981
France 1982

Note — Recommandations internationales et Documents internationaux peuvent être acquis au
Bureau International de Métrologie Légale, 11, rue Turgot, 75009 PARIS.

Bulletin OIML N° 89 - Décembre 1982
ETATS MEMBRES

ALGERIE
REP. FEDERALE D'ALLEMAGNE
REP. DEMOCRATIQUE ALLEMANDE
AUSTRALIE
AUTRICHE
BELGIQUE
BULGARIE
CAMEROUN
CANADA
CHYPRE
REP. DE COREE
REP. POP. DEM. DE COREE
CUBA
DANEMARK
EGYPTE
ESPAGNE
ETATS-UNIS D'AMERIQUE
ETHIOPIE
FINLANDE
FRANCE
GRECE
GUINEE
HONGRIE
INDE

INDONESIE
IRLANDE
ISRAEL
ITALIE
JAPON
LIBAN
MAROC
MONACO
NORVEGE
PAKISTAN
PAYS-BAS
POLOGNE
ROUMANIE
ROYAUME-UNI DE GRANDE-BRETAGNE ET D'IRLANDE DU NORD
SRI LANKA
SUEDE
SUISSE
REP. UNION DE TANZANIE
TCHECOSLOVAQUIE
TUNISIE
U.R.S.S.
VENEZUELA
VOUSOSLAVIE

MEMBRES CORRESPONDANTS

MEMBRES
du
COMITE INTERNATIONAL de METROLOGIE LEGALE

ALGERIE

Membre à désigner par son Gouvernement

REPUBLIQUE FEDERALE D'ALLEMAGNE

Mr W. MÜHE
Chef des Bureaux Technico-Scientifiques,
Physikalisch-Technische Bundesanstalt,
Bundesallee 100
3300 BRAUNSCHWEIG.

REPUBLIQUE DEMOCRATIQUE ALLEMANDE

Mr H.W. LIERS
Directeur de la Métrologie Légale,
Amt für Standardisierung, Messwesen
und Warenprüfung,
Fürstenwalder Damm 388
1162 BERLIN.

AUSTRALIE

Mr T.J. PETRY
Executive Director
National Standards Commission,
P.O. Box 282
NORTH RYDE, N.S.W. 2113.

AUTRICHE

Mr F. ROTTER
Président,
Bundesamt für Eich- und Vermessungswesen
Artigasse 35
A-1163 WIEN.

BELGIQUE

Madame M.L. HENRION
Inspecteur Général
Service de la Métrologie
24-26, rue J.A. De Mot
B-1040 Bruxelles

BULGARIE

Mr P. ZLATAREV
Directeur Général du Centre National
de Métrologie
Comité d'État pour la Science et le
Progrès Technique
Département à la Normalisation
21, rue du 8 Septembre
1000 SOFIA

CAMEROUN

Mr E. NDOUGOU
Directeur du Service des Poids et Mesures
Direction des Prix et des Poids et Mesures
Boîte postale 493
DOUALA.

CANADA

Mr R. KNAPP
Director, Legal Metrology Branch
Consumer and Corporate Affairs
Tunney's Pasture
Standards Building
Ottawa, Ontario K1A OC9

CHYPRE

Mr M. EROTOKRITOS
Chief Industrial Officer
Ministry of Commerce and Industry
NICOSIA.

REPUBLIQUE DE COREE

Mr Kim Sung-Hwan
Chef de la Division Métrologie
Bureau des Services d'Extension
Bureau du Développement Industriel
Ministère du Commerce et de l'Industrie
SEOUL
REPUBLIC OF SOUTH KOREA
Mr HO SU GYONG
Director, Central Metrological Institute,
Metropolitan Committee
Committee of the Science and Technology
of the State of the D.P.R. of Korea
Sosong gu yok Ryomyong dong
PYONGYANG.

CUBA
Monsieur J. OCEGÜERA
C/o Mr SERRA ALMER
Comité Estatal de Normalización
Egido 610
Zona Postal 1
Ciudad de LA HABANA.

DENMARK
Mr E. REPSRORFF HOLTVEG
Directeur, Justervæsenet
Amager Boulevard 115
DK 2300 KØBENHAVN S.

EGYPT
Mr F.A. SOBHY
Président,
Egyptian Organization for standardization
and quality control
2 Latin America Street, Garden City
CAIRO.

ESPAGNE
Membre à désigner par son Gouvernement
Correspondance adressée à
Comision nacional de Metrologia y Metrotecnia
3 calle del General Ibanez Ibero
MADRID-3.

ESTATS-UNIS D'AMÉRIQUE
Mr D.E. EDGERLY
Manager, International Legal Metrology Program
Office of Product Standards Policy
Bldg. 221, room A 353
National Bureau of Standards
WASHINGTON D.C. 20234

ETHIOPIE
Mr NEGUSSE ABEBE
Metrologist and Head of Weights
and Measures Inspection Section
Ethiopian Standards Institution,
P.O. Box 2310
ADDIS ABABA.

FINLANDE
Madame U. LÄHTENMÄKI
Director of the Metrology Department
Technical Inspectorate
Box 204
SF 00181 HELSINKI 18.

FRANCE
Mr P. AUBERT
Chef du Service des Instruments de Mesure
Ministère de la Recherche et de l’Industrie
2, Rue Jules-César
75012 PARIS.

GRECE
Madame M. GITZENI
Fonctionnaire technique
de la Direction des Poids et Mesures
Direction Générale Technique
Ministère du Commerce
ATHENES

GUINEE
Mr B. CONDE
Directeur du Service National
de Métrologie Légale,
Ministère du Commerce Intérieur
CONAKRY.

HONGRIE
Mr M. GACSI
Président, Országos Mérésügyi Hivatal,
P.O. Box 19
H-1531 BUDAPEST

INDE
Mr S. CHANDRA SEKHARAN
Director (Weights & Measures)
Ministry of Civil Supplies
Room No. 308, B-Wing,
Shastri Bhavan
NEW DELHI 110 001

INDONESIE
Mr R. HAROEN
Direktur Metrologi,
Departemen Perdagangan, dan Koperasi
Jalan Pasteur 27
BANDUNG.

IRLANDE
Mr M. FAHY
Principal Officer,
Department of Trade, Commerce and Tourism
Frederik Building, Setanta Centre,
South Frederick Street
DUBLIN 2.

ISRAEL
Mr A. RONEN
Controller of Weights, Measures and Standards
Ministry of Industry and Trade
P.O.B. 299
JERUSALEM 94190.

ITALIE
Mr C. AMODEO
Capo dell’Ufficio Centrale Metrico,
Via Antonio Bosio, 15
00161 ROMA.

JAPON
Mr M. KAWATA
Director General
National Research Laboratory of Metrology
1-4, 1-Cho, Umezono, Sakura-Mura, Nihari-Gun
IBARAKI 305.

Bulletin OIML No 89 - Décembre 1982
LIBAN
Mr M. HEDARI
Chef du Service des Poids et Mesures,
Ministère de l’Economie et du Commerce,
Rue Al-Sourati, Imm. Assaf
RAS-BEYROUTH.

MAROC
Mr M. BENKIRANE
Chef de la Division de la Métrologie Légale
Direction du Commerce Intérieur,
Ministère du Commerce et de l’Industrie.
RABAT.

MONACO
Mr A. VATRICAN
Secrétaire Général,
Centre Scientifique de Monaco
16, Boulevard de Suisse
MC MONTE CARLO.

NORVEGE
Mr K. BIRKELAND
Directeur, Det norske justervesen
Postbox 6832 St. Olavs Plass
OSLO 1.

PAKISTAN
Membre à désigner par son Gouvernement
Correspondance adressée à
Pakistan Standards Institution
39-Garden Road, Saddar
KARACHI-3.

PAYS-BAS
Mr A.C. BILJOO
Directeur,
Dienst van het Uitgezonden, Hoofddirectie
Schoemakersstraat 97, Delft. — Postbus 654
2600 AR DELFT.

POLOGNE
Mr T. PODGORSKI
Président Adjoint,
Polski Komitet Normalizacji, Miar i Jakosol
ul. Elektoralna 2
00-139 WARSZAWA.

ROUMANIE
Mr I. ISCRULESCU
Directeur, Institutul National de Metrologie,
Sos Virtan-Birzesti nr. 11
BUCAREST 4.

ROYAUME-UNI DE GRANDE-BRETAGNE
ET D’IRLANDE DU NORD
Mr G. SOUCH
Director,
National Weights and Measures Laboratory,
Department of Trade
26, Chapter Street
LONDON SW1P 4NS.

REPUBLIQUE DEM. SOCIALISTE DE SRI LANKA
Mr H.L.K. GOONETTILEKE
Deputy Commissioner
Measurement Standards and Services Division,
Department of Internal Trade,
Park Road
COLOMBO 5.

SUÈDE
Mr R. OHILON
Ingénieur en Chef, Statens Provninganstalt,
P.O. BOX 857
S-501 15 BORAS.

SUISSE
Mr A. PERLSTAIN
Directeur, Office Fédéral de Métrologie,
Lindenweg 50
3020 WABERN/BE.

REPUBLIQUE UNIE DE TANZANIE
Mr M. KABALO
Principal Inspector, Weights & Measures
National Bureau of Standards
P.O. Box 313
DAR ES SALAAM.

TCHÉCOSLOVAQUIE
Mr T. HILL
Président, Úrad pro normalizaci a mereni,
Václavské námestí c.19
113 47 PRAHA 1 — NOVE MESTO.

TUNISIE
Mr F. MERDASSI
Directeur des Entreprises Publiques
Industrielles et de la Planification
Ministère de l’Economie Nationale
1, rue d’Irak
TUNIS.

U.R.S.S.
Mr L.K. ISSAEV
Chef du Département de Métrologie,
Goststandart,
Leninsky Prospekt 9
117049 MOSCOU.

VENEZUELA
Mr A. PEREZ GUANCHEZ
Directeur,
Servicio Nacional de Metrología Legal
Ministerio de Fomento,
Av. Javier Ustariz, Edif. Parque Residencial
URB. San Bernardino
CARACAS.

YOUGOSLAVIE
Mr N. BEVK
Ingénieur, Sous-Directeur,
Bureau Fédéral des Mesures et Métaux Précieux
Mika Alasa 14
11000 BEOGRAD.
PRESIDENCE

Président K. BIRKELAND, Norvège
1er Vice-Président L.K. ISSAEV, U.R.S.S.
2e Vice-Président

CONSEIL DE LA PRESIDENCE

K. BIRKELAND, Norvège, Président
W. MUHE, Rép. Féd. d'Allemagne
D.E. EDGERLY, Etats-Unis d'Amérique
G. SOUCH, Royaume-Uni
A. PERLSTAIN, Suisse
L.K. ISSAEV, U.R.S.S., V/Président
H.W. LIERS, Rép. Dém. Allemande
P. AUBERT, France
H.L.K. GOONETILLEKE, Sri Lanka

Le Directeur du Bureau International de Métrologie Légale

BUREAU INTERNATIONAL DE METROLOGIE LEGALE

Directeur B. ATHANE
Adjoint au Directeur S.A. THULIN
Adjoint au Directeur B. PETIK
Ingénieur Consultant A.B. TURSKI
Administrateur Ph. LECLERCO

MEMBRES D'HONNEUR (*)

J. STULLA-GOTZ, Autriche — Président du Comité
H. KONIG, Suisse — Vice-Président du Comité
H. MOSER, Rép. Féd. d'Allemagne — Membre du Conseil de la Présidence
F. VIAUD, France — Membre du Conseil de la Présidence
M.D.V. COSTAMAGNA — Premier Directeur du Bureau
V. ERMAKOV, U.R.S.S. — Vice-Président du Comité
A.J. van MALE, Pays-Bas — Président du Comité

(*) Note : Cette liste ne comprend pas les Membres d'Honneur décédés.

Grande Imprimerie de Troyes, 130, rue Général-de-Gaulle, 10000 TROYES
Dépôt légal n° 6677 - Décembre 1982

54 Bulletin OIML N° 89 - Décembre 1982