International Recommendation

OIML R 137-3

Edition 2014 (E)

Gas meters

Part 3: Test report format

Compteurs de gaz

Partie 3: Format du rapport d'essai

Organisation Internationale de Métrologie Légale

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY

Contents

For	eword		5			
1	Introduc	tion	6			
2	Applicat	bility of this report format	6			
3	Guidance for the application of the test report format7					
4	Evaluation report					
A	References of the authority responsible for this report					
B	Synopsis of the results of the examination and tests					
С		nary of the results of the examination and tests				
	C.1 C.2	Examinations Performance tests				
_						
D		ral information				
	D.1	Manufacturer				
	D.2	Applicant				
	D.3 D.4	Testing laboratories involved in the tests				
	D.4 D.5	General information concerning the type Adjustments and modifications				
	D.5 D.6	Additional information concerning the type				
	D.0 D.7	Results of previous tests that were taken into account				
	D.8	Information concerning the test equipment used for the type evaluation				
E		ination				
Ľ						
	E.1 E.2	Requirements checklist Software requirements checklist				
F	Perfo	rmance tests				
	F.1	Error (12.6.1)				
	F.2	Reproducibility (12.6.2)				
	F.3	Repeatability (12.6.3)				
	F.4	Orientation (12.6.4)				
	F.5	Flow direction (12.6.5)				
	F.6 F.7	Working pressure (12.6.6) Temperature (12.6.7)				
	г.7 F.8	Flow disturbance (12.6.8)				
	F.9	Durability (12.6.9)				
	F.10	Drive shaft (torque) (12.6.10).				
	F.11	Overload flow (12.6.11)				
	F.12	Different gases (12.6.12)				
	F.13	Vibrations and shocks (12.6.13)				
	F.14	Interchangeable components (12.6.14)	38			
	F.15	Electronics (12.6.15)				
	F.15.1	Dry heat (A.4.1.1)				
		Cold (A.4.1.2)				
		Damp heat, steady-state (non-condensing) (A.4.2.1)				
		Damp heat, cyclic (condensing) (A.4.2.2)				
		Vibration (random) (A.5.1)				
		Mechanical shock (A.5.2) Radiated, RF, electromagnetic fields (A.6.1.1)				
		Conducted radio-frequency fields (A.6.1.2)				
		Electrostatic discharge (A.6.2)				
		Bursts (transients) on signal, data and control lines (A.6.3).				
		Surges on signal, data and control lines (A.6.4)				

F.15.12 DC mains voltage variation (A.7.1)	50
F.15.13 AC mains voltage variation (A.7.2)	
F.15.14 AC mains voltage dips and short interruptions (A.7.3)	52
F.15.15 Voltage dips, short interruptions and voltage variations on DC mains power (A.7.4).	53
F.15.16 Bursts (transients) on AC and DC mains (A.7.5)	55
F.15.17 Surges on AC and DC mains (A.7.6)	56
F.15.18 Ripple on DC mains power (A.7.7)	57
F.15.19 Low voltage of internal battery (not connected to the mains power) (A.8)	58
F.16 Influences from ancillary devices (12.6.16)	59

Foreword

The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization whose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States. The main categories of OIML publications are:

- International Recommendations (OIML R), which are model regulations that establish the metrological characteristics required of certain measuring instruments and which specify methods and equipment for checking their conformity. OIML Member States shall implement these Recommendations to the greatest possible extent;
- International Documents (OIML D), which are informative in nature and which are intended to harmonize and improve work in the field of legal metrology;
- **International Guides (OIML G),** which are also informative in nature and which are intended to give guidelines for the application of certain requirements to legal metrology; and
- International Basic Publications (OIML B), which define the operating rules of the various OIML structures and systems.

OIML Draft Recommendations, Documents and Guides are developed by Project Groups linked to Technical Committees or Subcommittees which comprise representatives from the Member States. Certain international and regional institutions also participate on a consultation basis. Cooperative agreements have been established between the OIML and certain institutions, such as ISO and the IEC, with the objective of avoiding contradictory requirements. Consequently, manufacturers and users of measuring instruments, test laboratories, etc. may simultaneously apply OIML publications and those of other institutions.

International Recommendations, Documents, Guides and Basic Publications are published in English (E) and translated into French (F) and are subject to periodic revision.

Additionally, the OIML publishes or participates in the publication of Vocabularies (OIML V) and periodically commissions legal metrology experts to write Expert Reports (OIML E). Expert Reports are intended to provide information and advice, and are written solely from the viewpoint of their author, without the involvement of a Technical Committee or Subcommittee, nor that of the CIML. Thus, they do not necessarily represent the views of the OIML.

This publication - referenced OIML R 137-3, Edition 2014 - was developed by the Technical Subcommittee TC 8/SC 7 *Gas metering*. It was approved for final publication by the International Committee of Legal Metrology in 2014 and will be submitted to the International Conference of Legal Metrology in 2016 for formal sanction.

OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional information on OIML Publications may be obtained from the Organization's headquarters:

Bureau International de Métrologie Légale 11, rue Turgot - 75009 Paris - France Telephone: 33 (0)1 48 78 12 82 Fax: 33 (0)1 42 82 17 27 E-mail: biml@oiml.org Internet: www.oiml.org

OIML R 137 Gas meters. Part 3: Test report format

1 Introduction

Part 3 of this Recommendation describes the type evaluation report format (hereafter called the "report format") applicable to any kind of gas measuring instruments (gas meters) independent of its technology. It presents a standardized format for recording the results of the various tests and examinations, described in Part 2 of OIML R 137-1 & -2:2012, to which a type of a gas meter shall be submitted with a view to its approval based on this OIML Recommendation.

The use of this report, as is, or translated into a different language is recommended to all metrology services or laboratories evaluating and/or testing types of gas meters according to OIML R 137-1 & -2:2012, or to national or regional regulations based on this Recommendation. If this Recommendation is translated, it is highly recommended to leave the structure and the numbering of the clauses unchanged, in order to facilitate the interpretation of most of the contents even for those readers that are not able to easily interpret the applied language.

The report format, in the practical application, shall as a minimum contain clauses A–F (where applicable) in addition to a cover page issued by the Issuing Authority.

2 Applicability of this report format

In the framework of the *OIML Certificate System for Measuring Instruments*, and the OIML *Mutual Acceptance Arrangement* (OIML MAA) applicable to gas meters in conformity with OIML R 137-1 & -2:2012, the use of this report format in French and/or in English is mandatory, including its translation into the national languages of the countries issuing such certificates, where appropriate.

Concerning the implementation of OIML Recommendation R 137-1 & -2:2012 in national regulations this report format is informative.

3 Guidance for the application of the test report format

Key to the symbols and expressions used in the following pages:

• The "summary of the results" and the "results of the tests" shall be completed according to the following examples:

	Class 0.5	Class 1	Class 1.5	No	Meaning
Passed for	Х				Passed for class 0.5
Passed for		Х	Х		Passed for classes 1 and 1.5
Passed for				Х	Failed for all classes
Passed for	/	/	/	/	test is not applicable for this instrument

- Unless prescribed otherwise, "Date" in the test report refers to the date of testing.
- The name(s) or symbol(s) of the unit(s) used to express the test results shall be specified where applied.
- Where in a table one or several choices can be made, checkboxes are used. In such cases columns Y, N, N/A are generally not applicable and are therefore presented crosshatched (see the example below)

Clause	Description	Yes	οN	Not applicable	Observations

In case a prescribed test is not relevant for the type of instrument to be tested, the reason why the test is omitted shall be clearly stated in the field "Observations" (for instance tests related to AC mains supply in the case of an instrument only powered by batteries, or partial testing after modification of a previously approved type).

The numbering of the report and the page numbers shall be completed in the heading.

Pages 1–5 of this document shall be replaced by a cover page issued by the Issuing Authority.

4 Evaluation report

The following pages concern the format for the individual report, starting with space for the cover page.

<Cover page issued by the Issuing Authority>

Contents of the report

А	References of the authority responsible for this report	
В	Synopsis of the results of the examination and tests	. 11
С	Summary of the results of the examination and tests	. 12
C.1	Examinations	. 12
C.2	Performance tests	. 13
D	General information	. 14
D.1	Manufacturer	. 14
D.2	Applicant	. 14
D.3	Testing laboratories involved in the tests	. 15
D.4	General information concerning the type	. 16
D.5	Adjustments and modifications	. 17
D.6	Additional information concerning the type	. 17
D.7	Results of previous tests that were taken into account	. 17
D.8	Information concerning the test equipment used for the type evaluation	. 17
Е	Examination	. 18
E.1	Requirements checklist	. 18
E.2	Software requirements checklist	. 22
F	Performance tests	. 24
F.1	Error (12.6.1)	. 25
F.2	Reproducibility (12.6.2)	. 26
F.3	Repeatability (12.6.3)	. 26
F.4	Orientation (12.6.4)	. 27
F.5	Flow direction (12.6.5)	. 28
F.6	Working pressure (12.6.6)	. 29
F.7	Temperature (12.6.7)	. 30
F.8	Flow disturbance (12.6.8)	. 32
F.9	Durability (12.6.9)	. 34
F.10	Drive shaft (torque) (12.6.10)	. 35
F.11	Overload flow (12.6.11)	. 35
F.12	Different gases (12.6.12)	. 36
F.13	Vibrations and shocks (12.6.13)	. 37
F.14	Interchangeable components (12.6.14)	. 38
F.15	Electronics (12.6.15)	. 39
F.15	.1 Dry heat (A.4.1.1)	. 39
F.15	.2 Cold (A.4.1.2)	. 40
F.15	.3 Damp heat, steady-state (non-condensing) (A.4.2.1)	. 41
F.15	.4 Damp heat, cyclic (condensing) (A.4.2.2)	. 42
F.15	.5 Vibration (random) (A.5.1)	. 43
F.15	.6 Mechanical shock (A.5.2)	. 44
F.15	.7 Radiated, RF, electromagnetic fields (A.6.1.1)	. 45

F.15.8 Conducted radio-frequency fields (A.6.1.2)	
F.15.9 Electrostatic discharge (A.6.2)	
F.15.10 Bursts (transients) on signal, data and control lines	(A.6.3)
F.15.11 Surges on signal, data and control lines (A.6.4)	
F.15.12 DC mains voltage variation (A.7.1)	
F.15.13 AC mains voltage variation (A.7.2)	
F.15.14 AC mains voltage dips and short interruptions (A.7	7.3)
F.15.15 Voltage dips, short interruptions and voltage variat	ions on DC mains power (A.7.4)
F.15.16 Bursts (transients) on AC and DC mains (A.7.5)	
F.15.17 Surges on AC and DC mains (A.7.6)	
F.15.18 Ripple on DC mains power (A.7.7)	
F.15.19 Low voltage of internal battery (not connected to the	e mains power) (A.8) 58
F.16 Influences from ancillary devices (12.6.16)	

A References of the authority responsible for this report

Name	
Address	
Report number	
Application number	
(project number)	
Period of execution of the tests	
Date of issuing the report	
Name and signature of the person	
responsible for the report and	
stamp(s) (if applicable)	

B Synopsis of the results of the examination and tests

(To be completed by the Issuing Authority)

The tested specimen fulfils ALL applicable requirements in OIML R 137:2012for:Class 0.5Class 1Class 1.5					
	Yes	No			
Observations:					

C Summary of the results of the examination and tests (*To be completed by the Issuing Authority*)

C.1 Examinations

Details of the evaluation results are available in the corresponding referenced rows in clause E

Clause	General requirements	Comp	Compliancy with OIML R 137				
in R 137-1		Pass	Fail	N.A.			
4	Units of measurement						
5.2	Values of Q_{\max} , Q_{t} and Q_{\min}						
6.1	Construction						
6.2	Flow direction						
6.3	Indicating device						
6.4	Test element						
6.5	Ancillary devices						
6.6	Power sources						
6.7	Checks, limits and alarms for electronic gas meters						
6.8	Software						
7	Markings and inscriptions						
8.1	Instruction manual						
8.2	Installation conditions						
9	Sealing						
10.1	Pressure tappings						
Annex I	Software						

C.2 Performance tests

Details of the test results are available in the referenced sub clauses of clause F of this evaluation report

Clause in R 137-2	Performance tests	Clause in R 137-1	Complies with R 137-1			Details in
			Pass	Fail	N/A	
12.6.1	Error curve	5.3				
	WME	5.4				
	Cyclic volume	6.4.2				F1
	Determination of the value of the pulse generator	6.4.3				
12.6.2	Reproducibility	5.6				F2
12.6.3	Repeatability	5.7				F3
12.6.4	Orientation	5.13.1				F4
12.6.5	Flow direction	5.13.2				F5
12.6.6	Working pressure	5.8				F6
12.6.7	Temperature	5.9				F7
12.6.7.1	Flow tests with equal gas and ambient temperatures	5.9				F7.1
12.6.7.2	Flow tests with unequal gas and ambient temperatures	5.9				F7.2
12.6.8	Flow disturbance - single 90° bend - double out-of-plane bend - expander - reducer - diameter step - half pipe area plate	5.13.3				F8
12.6.9	Durability	5.10				F9
12.6.10	Drive shaft (torque)	5.13.4				F10
12.6.11	Overload flow	5.11				F11
12.6.12	Different gases	5.13.5				F12
12.6.13	Vibration and shocks	5.12				F13
12.6.14	Interchangeable components	5.13.6				F14
12.6.15	Electronics					
A.4.1.1	Dry heat	5.13.7				F15.1
A.4.1.2	Cold	5.13.7				F15.2
A.4.2.1	Damp heat, steady state (non-condensing)	5.13.7				F15.3
A.4.2.2	Damp heat, cyclic (condensing)	5.13.7				F15.4
A.5.1	Vibration (random)	5.13.7				F15.5
A.5.2	Mechanical shock	5.13.7				F15.6
A.6.1.1	Radio frequency immunity (radiated)	5.13.7				F15.7
A.6.1.2	Radio frequency immunity (conducted)	5.13.7				F15.8
A.6.2	Electrostatic discharge	5.13.7				F15.9
A.6.3	Bursts on signal and control lines	5.13.7				F15.10
A.6.4	Surges on signal and control lines	5.13.7				F15.11
A.7.1	DC mains voltage variation	5.13.7				F15.12
A.7.2	AC mains voltage variation	5.13.7				F15.13
A.7.3	AC mains voltage dips and short interruptions	5.13.7				F15.14
A.7.4	DC mains voltage dips, short interruptions and voltage variations	5.13.7				F15.15
A.7.5	Bursts on mains	5.13.7				F15.16
A.7.6	Surges on mains	5.13.7				F15.17
A.7.7	Ripple on DC mains power	5.13.7				F15.18
A.8	Low voltage of internal battery	5.13.7				F15.19
12.6.16	Influences from ancillary devices	5.13.8				F16

D General information

D.1 Manufacturer

Company	
Address	

D.2 Applicant

Company			
Representative			
Address			
Reference			
Date of application			
Applicant is authorized by the manufacturer (documented)		Yes	No
It has been verified the made to any other OIM	Yes	No	

Observations:

D.3 Testing laboratories involved in the tests

(This table to be completed for each test laboratory)

Name			
Address			
Application number			
Tests performed by this laboratory			
Date/period of the tests			
Name(s) of test engineer(s)			
Statement of compliance with the requirement of proven compe- tence for performing the above referred tests within the scope of OIML R 137-1 & -2:2012 (OIML B 3 [5.3.1])			
Where applicable accredited for	QA standard	Accreditation Number:	Expires (date):
Details of relevant peer assessment or assessment by other means where applicable			
In case tests have been performed on another location than the premises of this laboratory, give details here			
Name of the person in charge			
Date of signature			
Stamp (where applicable) and signature of the responsible person			

Observations:

D.4 General information concerning the type

and the specimen(s) supplied for the tests (as stated on the instrument / provided by the manufacturer)

Information, indicated on the instrument	
Manufacturer's trade mark	
Type designation	
Accuracy class	
Cyclic volume (if applicable)	
Minimum pressure p_{\min}	
Maximum pressure p_{max}	
Ambient temperature range	
Gas temperature range	
Base pressure (if applicable)	
Base temperature (if applicable)	
$t_{\rm sp}$ (if applicable)	
Electrical power	
Identification of software	

The following specimens were examined:

Specimen no.	Model	Serial no.	Year of fabrication	$Q_{\rm max}$ [m ³ /h]	$\begin{array}{c} Q_{t} \\ [m^{3}/h] \end{array}$	Q_{\min} [m ³ /h]
1						
2						
3						
4						
5						

Relevant external/internal photographs taken during the examination and tests:

D.5 Adjustments and modifications

Adjustments, modifications, and repairs made to the specimens during the testing:

D.6 Additional information concerning the type

Additional observations and/or information (connection equipment, interfaces, etc.):

D.7 Results of previous tests that were taken into account

Details:

D.8 Information concerning the test equipment used for the type evaluation

(including details of simulations and the way measurement uncertainty is taken into account)

Details:

E Examination

(To be completed by the Evaluating Authority)

E.1 Requirements checklist

Clause in R 137-1	Description				Yes	ON	Not applicable	Observations
4	Units of measurement							
	All applied quantity values are expressed in:	SI units:						Applied units:
		other legal un	its conforming OIML D 2:2007:					
5.2	Values of Q_{max} , \underline{Q}_{t} and \underline{Q}_{t}	Q_{\min}						
	The following ratios apply:) while $Q_{\text{max}}/Q_t \ge 10$: and < 50 while $Q_{\text{max}}/Q_t \ge 5$:					Applied ratios: Q_{max}/Q_{min} Q_{max}/Q_t \ldots
6.1	Construction	•						
	physical, chemical and th	hermal durabili	pplied materials comply the criter ty.	ion on				
	The case is gas-tight up t	to p_{max} .						
	Devices for reduction of	condensation a	are incorporated.					The following devices are incorporated:
	The meter is protected as		mechanical interference.					Explain how.
	The indicating device is	connected	physically:					
			remotely:					
	The meter is equipped w event of calamities.	vith a safety dev	vice that may shut off the gas flow	in the				
	Connections between ele	ectronic parts a	re reliable and durable.					Explain how.
			the manufacturer are not of influer exchange without an intermediate					
		ter totalization	register does not change.					
6.2	Flow direction		register does not enaliger					
	The direction of the gas	flow is:	indicated by a clear indication:					
			determined by the construction of the gas meter					
	Where the meter can be a headed arrow with a plus		lirectional measurements, a double	e-				
	In bi-directional use any reverse flow is:		subtracted from the indicated quantity:					
			recorded separately:					
	reverse flow.	-	ements are met both for forward a	nd				
	Where the meter is not designed for measuring reverse flow:	measures prev	venting reverse flow are installed:					
	10v0150 110w.	accidental rev	ble to withstand incidental or erse flow without deterioration of ny forward flow measurement	, 🗌				
	The meter is provided wire functioning in case of re-	ith a device pre	eventing the indicating device from	n				

Clause in R 137-1		Description	Yes	No	Not applicable	Observations
6.3	Indicating device					
	Kind of indicating device:	a) mechanical:				
		b) electromechanical or electronic:				
		a combination of a) and b) above:				
	The quantity of gas is in	dicated in a clear way and unambiguous.				
	The indication cannot b	e reset and is non-volatile.				
	The applied decimal se	parator is clear.				
	In case one display is a	pplied for different indications it is made clear which is				
	the actual kind of quant					
		is able to show at least 1 000 h of operation at Q_{\max}				Number of digits:
	without returning to the					
		git does not exceed the quantity of gas passed during one				Value of the least significant digit:
	hour at Q_{\min} .	. 1				
	appearance of digits.	ting device fulfils the requirements on dimensions and				
		is provided (electromechanical or electronic indicating				
	devices only).	Provided (electrometrialited) of electrome indicating				
		ndicating device clearly identifies the associated gas the communication is checked.				

Clause in R 137-1		Description	Yes	No	Not applicable	Observations
6.4	Test element					
	The meter is equipped with:	an integral test element:				Value of the scale interval:
		a pulse generator:				Pulse frequency (relative to flow rate):
		arrangements to permit the connection of a portable test unit:				
	The integral test element	fulfils the required construction criteria.				
		s the required construction and synchronizing criteria.				
		ade available for attachable test devices is marked on				
		ws for the application of an attachable test device as a				
	test element).					
65		r pulse is incremented at least each 60 s.				
6.5	Ancillary devices	bed with ancillary devices not affecting the correct				The meter is equipped with the
	operation of the meter.	bed with anemary devices not affecting the correct				following ancillary devices:
		afts are suitable protected when not connected.				Applied protection method:
		three times the permissible torque does not result in				
	breaking the connection b	etween measuring transducer and gearing				
6.6	Power sources (electrica					
	The gas meter is powered by means of a:	mains power source:				
	powered by means of a:					
		non-replaceable power source:				
		replaceable power source:				
	Mains power:	In case of a mains power failure the indication is not lost.				
		The properties and parameters are not affected by the power failure. The connection to the mains can be secured from				
		tampering.				
	Non-replaceable power source:	The indicated lifetime of the power source is sufficient for the meters life time.				
		The remaining battery capacity is presented on the display or the lifetime is indicated on the meter.				
	Replaceable power source:	Detailed specification for the replacement of the power source is provided .				
	source.	The estimated remaining life of the power source is				
		displayed or a warning is given in case the remaining life time is below 10 %.				
		Properties and parameters of the meter are not affected during replacement.				
		Replacement is possible without breaking a				
		metrological seal and the compartment of the source is secured against tampering.				
6.7	Checks, limits and alarm		I	1	1	1
	The gas meter verifies th and critical devices, the in	e presence and correct functioning of the transducers ntegrity of data and pulse transmission.				Explanation how.
		pon overload flow conditions, extreme measurement				Explanation how.
		nctions a visible and/or audible alarm is given, which				Explanation how.
		acknowledgement and the cause of the alarm is				
		in specific alarm registers.				
7.1	Markings	мд.	I	I	I	I
		with all relevant markings.				

Clause in R 137-1	Description	Yes	No	Not applicable	Observations
8.1	Instruction manual				•
	The instruction manual includes the following aspects:				
	- operating instructions;				
	- storage temperatures;				
	 rated operating conditions; 				
	- warm up time;				
	- environmental conditions;				
	 details external power sources; 				
	 specific installation conditions; 				
	 specifications battery; 				
	 instructions for installation, repair, etc.; 				
	 compatibility with interfaces, etc. 				
8.2	Installation conditions				
	The following installation conditions are specified:				
	 the position to measure the working temperature of the gas; 				
	- filtering;				
	 leveling and orientation; 				
	- flow disturbances (including minimum upstream and downstream				
	pipe lengths);				
	 pulsations of acoustic interference; 				
	- rapid pressure changes;				
	- absence of mechanical stress (due to torque and bending);				
	- mutual influence between gas meters;				
	- mounting instructions;				
	 maximum allowable diameter differences between the gas meter and connecting give work. 				
	 and connecting pipe work; other relevant installation conditions. 				
9.1.3	Hardware sealing			I	
9.1.5	Dismantling of parts result in permanently visible damage to seals.	1	r –	1	
	Marking plates containing metrological information are sealed and all parts	-			
	which affect the accuracy of the instrument.				
	The applied sealings can withstand outdoor conditions.				
9.1.4	11 0				
9.1.4	Electronic sealing Parameters can only be changed by applying a security code (password) or a		r	1	
	special device.				
	The security code can be altered by authorized persons.	-			
	When the configuration mode is activated this is clearly indicated.				
	The most recent intervention is recorded in an event logger. The record				
	includes an identification of the authorized person, an event togger. The record			1	
	time, the former value of the changed parameters and totals.			1	
	The principle of first-in-first-out (FIFO) is applied in case a need for deletion				
	of previous records of intervention.			1	
	For devices equipped with parts which can be disconnected:				
	- parameter access is not possible via the disconnected port;			1	
	- interposing is prevented by security provisions or mechanical			1	
	means;			1	
	- the meter does not operate in case of wrong configuration.			1	
10	Suitability for testing	1	I	ı	1
10	The bore of the applied pressure tappings is sufficiently large				Bore of the pressure tappings:
	Closure means are provided				Dore of the pressure tappings.
	The pressure tappings for measuring the working pressure are clearly and			<u> </u>	
	indelibly marked " p_m " or " p_r " and other pressure tappings " p ".	1	1	1	

E.2 Software requirements checklist

Applicable evaluation procedures:

Clause in R 137-1	Requirement	Evaluation procedure
I.1.1	Software identification	AD + VFTSw
I.1.2	Correctness of algorithms	AD + VFTSw
I.1.3	Fraud protection	AD + VFTSw + DFA/CIWT/SMT
	Parameter protection	AD + VFTSw + DFA/CIWT/SMT
I.2.1	Separation of electronic devices and sub-assemblies	AD
I.2.2	Separation of software parts	AD
I.2.3	Storage of data, transmission via communication systems	AD + VFTSw + CIWT/SMT
I.2.3.1	Data protection with respect to time of measurement	AD + VFTSw + SMT
I.2.4	Automatic storing	AD + VFTSw
I.2.3.4	Transmission delay	AD + VFTSw
I.2.3.5	Transmission interruption	AD + VFTSw
	Time stamp	AD + VFTSw

Abbreviation	Description	Not applicable	Related clause from OIML D 31:2008
AD	Analysis of the documentation and validation of the design		6.2.3.1
VFTM	Validation by functional testing of metrological functions		6.2.3.2
VFTSw	Validation by functional testing of software functions		6.2.3.3
DFA	Metrological data flow analysis		6.2.3.4
CIWT	Code inspection and walkthrough		6.2.3.5
SMT	Software module testing		6.2.3.6

For each of the applicable requirements an explanation on the manner in which the requirement is met is presented in the column 'observations'.

Clause in R 137-1	Description	Yes	No	Not applicable	Observations
I.1.1	Software identification				
	The legally relevant parts are clearly identified.				
	The identification number is:				
	The identification is presented by means of:				
	The identification is inextricably linked to the software.				
I.1.2	Correctness of algorithms and functions				
	The measuring algorithms and functions are appropriate and functionally				
	correct.				
I.1.3	Software protection (against fraud)				
	The legally relevant software is protected against unauthorized modification, loading or changes by swapping the memory device.				
	Only clearly documented functions can be activated by the user interface, which do not facilitate fraudulent use				
	Parameters that fix the legally relevant characteristics are secured against unauthorized modification.				
	Displaying of current parameter settings are possible.				
	Protection/sealing makes unauthorised access impossible or evident.				
	Detection by checking facilities of significant faults is performed by the software and in the legally relevant software part.				
	A list is available of anomalies which result in a significant fault and which are detected by the software.				
I.2.1	Separation of electronic devices and sub-assemblies				1
	Constituents of the gas meter, performing legally relevant functions, are clearly				
	identified, defined and document.				
	Those functions cannot be inadmissibly influenced by commands received via	1			
	an interface.				
	All legally relevant software parts are clearly described.				

	An interface is available between legally relevant software and other software			
	parts, which is clearly documented. All communication is performed			
	exclusively via this interface.			
	The interface commands are documented with a statement of completeness.			
	The legally relevant software has priority using the resources over non-relevant			
	software. The measurement task is not delayed or blocked by other tasks.			
I.2.2	Shared indications			
	The same display is used for presenting both information from the legally			
	relevant part and the non-legally relevant part.			
	Software for the indication of measurement results belong to the legally			
	relevant part.			
I.2.3	Storage of data, transmission via communication system			
	The measurement value stored or transmitted is accompanied by all relevant			
	information for future legally relevant use.			
	The data is protected to guarantee the authenticity, integrity and correctness			
	concerning the time of measurement.			
	The memory device is fitted with a checking facility, which guarantees that			
	irregular data is discarded or marked unusable.			
	The software module that prepares the data for storing, sending and checking			
	after reading or receiving is part of the legally relevant software.			
	Cryptographic methods are applied. Confidentiality key-codes are kept secret			
	and secured.			
	The measurement is not inadmissibly influenced by a transmission delay.			
	No measurement data is lost in case the network services become in available.			
	Data storage is performed automatically.			
	The storage device has sufficient permanency to ensure that the data is not			
	corrupted under normal storage conditions.			
	There is sufficient memory storage.			
	All data necessary for the calculation is stored with the final calculated value.			
	Stored data is deleted when the transaction is settled under the following			
	conditions:			
	- deletion is performed in the same order as the recording order;			
	- deletion is started automatically or after a specific manual operation.			

F Performance tests

	А	SS	
Flow rate Q			
	0.5	1	1.5
$Q_{\min} \leq Q < Q_{\mathrm{t}}$	±1%	±2%	±3%
$Q_{ m t} \leq Q \leq Q_{ m max}$	±0.5 %	± 1 %	± 1.5 %

Concerning the performance tests the following maximum permissible errors have been applied:

If applicable, the following increased MPE has been applied:

(Applicable to gas meters with built-in conversion devices, showing the volume at base volume only)

In addition to the maximum permissible errors as indicated in the table above an increase
by 0.5 % in the temperature range of $(t_{sp} - 15)$ °C to $(t_{sp} + 15)$ °C and an additional
increase of 0.5 % per additional interval of 10 °C outside this temperature range
Applicable temperature t_{sp} :

The following rate for the weighted mean error (WME) has been applied:

	А	Accuracy class					
	0.5 1 1.5						
WME	± 0.2 %	± 0.4 %	± 0.6 %				

F.1 Error (12.6.1)

Observer:	
Date:	

Temperature during the test (°C): .. ± ..

The error of the gas meter is determined at different flow rates.

:

Type of gas Pressure during the test :

	Specimen number								
Flow		Error [%]						Limit	Result
rate							error	(MPE)	
$[m^{3}/h]^{*)}$	1	2	3	4	5	6	[%]	[%]	+/-

WME	Limit	Result
[%]	[%]	+/-

Determination of the cyclic volume (6.4.2):

Specimen number							
Measured cyclic volume	Nominal cyclic volume	Limit	Result				
[dm ³]	[dm ³]	[%]	+/-				
		5					

Determination of the value of the pulse generator (6.4.3):

Specimen number							
Measured value	Nominal value	Limit	Result				
[pulses / m ³]	[pulses / m ³]	[%]	+/-				
		0.05					

Passed Yes	No
------------	----

*) For mass meters the flow rate may be presented in kg/h (applicable to all instances within this report where the flow rate is expressed in volumetric units)

F.2 Reproducibility (12.6.2)

Observer:	
Date:	

:

Temperature during the test (°C): .. ± ..

The reproducibility of the gas meter is determined at different flow rates.

Type of gas Pressure during the test :

	Specimen number								
Flow	Error [%]						Maximum	Limit	Result
rate							difference	(¹ / ₃ MPE)	
[m ³ /h]	1	2	3	4	5	6	[%]	[%]	+/-

Passed Yes No

F.3 Repeatability (12.6.3)

Observer:		Temperature during the test (°C):	±
Date:			

The repeatability of the gas meter is determined at different flow rates.

:

Type of gas Pressure during the test :

Specimen number						
Flow rate	Error [%]		Maximum difference	Limit (¼ MPE)	Result	
[m ³ /h]	1	2	3	[%]	[%]	+/-
$Q_{ m max}$						
$Q_{ m t}$						
Q_{\min}						

Passed Yes	No
------------	----

F.4 Orientation (12.6.4)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The error of the gas meter is determined at different orientations of the gas meter, as stated in the table below.

Type of gas : Pressure during the test :

Specimen number					
Flow rate		Error [%]		Limit (MPE)	Result
[m ³ /h]	Horizontal	Vertical up	Vertical down	[%]	+/-

Specimen number					
				Limit (WME)	Result
	Horizontal	Vertical up	Vertical down	[%]	+/-
WME [%]					

Intermediate adjustments are necessary to meet the requirements:

Mark to be applied:

Passed Yes No

F.5 Flow direction (12.6.5)

Observer:	
Date:	

:

Temperature during the test (°C): $.. \pm ..$

The error of the gas meter is determined at different flow directions, as stated in the table below.

Type of gas Prossure during the t

Pressure during the test :

	Specimen number					
Flow	Erro	r [%]	Limit	Result		
rate	Normal flow	Reverse flow	(MPE)			
[m ³ /h]	direction	direction	[%]	+/-		

Specimen number						
Normal flow Reverse flow Limit (WME) Result						
	direction	direction	[%]	+/-		
WME [%]						

Intermediate adjustments are necessary to meet the requirements:

Mark to be applied:

	Passed	Yes	No
--	--------	-----	----

F.6 Working pressure (12.6.6)

Observer:	
Date:	

:

Temperature during the test (°C): $.. \pm ..$

The error of the gas meter is determined at different operating pressures, as stated in the table below.

Type of gas

Specimen number					
Flow	Erro	r [%]	Limit	Result	
rate			(MPE)		
[m ³ /h]	at bar	at bar	[%]	+/-	

Intermediate adjustments are necessary to meet the requirements:

Specified range(s) of operating pressure:

Passed	Yes	No
--------	-----	----

F.7 Temperature (12.6.7)

a) Flow tests at different temperatures

F.7.1 Flow tests with equal gas and ambient temperature (12.6.7.1)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The error of the gas meter is determined at different ambient temperatures, as stated in the table below. During the tests the gas temperature was equal to the ambient temperature.

Type of gas : Pressure during the test :

Specimen number						
Flow		Erro	r [%]		Limit	Result
rate					(MPE)	
[m ³ /h]	at °C	at °C	at °C	at °C	[%]	+/-

Passed	Yes	No
--------	-----	----

F.7.2 Flow tests with unequal gas and ambient temperature (12.6.7.2)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The error of the gas meter is determined at different ambient temperatures, as stated in the table below. During the tests the gas temperature was unequal to the ambient temperature.

Type of gas : Pressure during the test :

	Spec	eimen number		
Flow	Erro	Limit	Result	
rate	Gas meter at +20 °C	Gas meter at +20 °C	(2 MPE)	
[m ³ /h]	Gas temperature +40 °C	Gas temperature 0 °C	[%]	+/-
Q_{\max}				
$Q_{\rm t}$				

Passed	Yes	No
--------	-----	----

*) The test is only applicable for gas meters indicating the volume at base conditions only (see 5.9). For other gas meters this test is not applicable.

b) Monitoring the unsuppressed flow rate output of the meter at no-flow conditions at different temperatures

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The error of the gas meter is determined at different ambient temperatures, as stated in the table below.

Type of gas : Pressure during the test :

	Specimen number					
	Indicated flow rate	Calculated	Error at	Calculated error	Limit	
Applied temperature	during no-flow	Δe	Q_{\min}	$(= \text{ error at } Q_{\min} + \Delta e)$	(MPE)	Result
[°C]	conditions $Q_0[m^3/h]$	at Q_{\min} [%]	[%]	[%]	[%]	+/-
at °C (reference)						
at °C						
at °C						
at °C (reference)						

 $Q_{\min} = \ldots m^3/h$

Influence Δe at Q_{\min} is calculated as follows:

$$\Delta e = \frac{Q_{0,\text{temp}} - Q_{0,\text{ref}}}{Q_{\min}} \times 100 \%$$

Passed Yes	No
------------	----

c) Evaluation of the construction of the meter

Observer:	
Date:	

The expected influence of temperature variations on the meter construction is evaluated.

Evaluation of the influence of temperature variations on the meter construction:

F.8 Flow disturbance (12.6.8)

The effect of disturbances to the accuracy of the gas meter is determined at different conditions, as stated in the tables below.

a) mild disturbances

Observer:	
Date:	

:

:

Temperature during the test (°C): .. ± ..

Applied piping configuration : Applied flow conditioner Applied operating pressure : Type of gas

	Specimen number										
Flow rate	At ref. Single Double out-of plane bend Ex-	Reducer	Diameter step		Max. shift (¹ / ₃ MPE)	Result					
[m ³ /h]		tions	90° bend	Rotating right	Rotating left	pander	Keducei	+3 %	-3 %	[%]	+/-
0.25	Error [%]										
Q_{\max}	Shift [%]										
040	Error [%]										
$0.4 Q_{\rm max}$	Shift [%]										
0	Error [%]										
Q_{\max}	Shift [%]										

For ultrasonic gas meters, the same test is performed while adding an extra 10 D straight pipe length (B.2.5):

	Specimen number										
Flow rate		At ref. condi-	Single	Double ou be	it-of plane nd	Ex-	Reducer	Diameter step		Max. shift (¹ / ₃ MPE)	Result
[m ³ /h]		tions	90° bend	Rotating right	Rotating left	pander		+3 %	-3 %	[%]	+/-
0.25	Error [%]										
Q_{\max}	Shift [%]										
0.4.0	Error [%]										
$0.4 Q_{\rm max}$	Shift [%]										
0	Error [%]										
Q_{\max}	Shift [%]										

.. ± ..

Temperature during the test (°C):

b) severe disturbances

Observer:	
Date:	

:

:

:

Applied piping configuration : Applied flow conditioner Applied operating pressure Type of gas

	Specimen number					
Flow			Error [%]		Max. shift	
rate		At ref.		plane bend with area plate	(1/3 MPE)	Result
[m ³ /h]		conditions			[%]	+/-
0.25.0	Error [%]					
0.25 Q _{max}	Shift [%]					
0.4.0	Error [%]					
$0.4 Q_{\rm max}$	Shift [%]					
0	Error [%]					
Q_{\max}	Shift [%]					

For ultrasonic gas meters, the same test is performed while adding an extra 10D straight pipe length (B.2.5):

	Specimen number					
Flow			Error [%]		Max. shift	
rate		At ref.		plane bend with area plate	(1/3 MPE)	Result
[m ³ /h]		conditions	· · · ·		[%]	+/-
0.25.0	Error [%]					
0.25 Q _{max}	Shift [%]					
0.4.0	Error [%]					
$0.4 Q_{\rm max}$	Shift [%]					
	Error [%]					
Q_{\max}	Shift [%]					

Passed	Yes	No
--------	-----	----

F.9 Durability (12.6.9)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The accuracy measurements before and after the exposure to the durability test are performed using ... *<type of gas or air>*.

The gas meter is exposed to a durability test with the following characteristics:

m³

- required volume:
- duration : h
- flow rate : Q_{\max}
- type of gas
- operating pressure :

Note: Durability is tested using a flow rate between 0.8 Q_{max} and Q_{max} comprising a total volume equivalent to a flow at Q_{max} during a period of 2 000 hours.

			SI	pecimen number				
Flow	Error	r [%]	Limit before	Limit after				
rate	before the durability	after the durability	durability (MPE)	durability (2 MPE)	Result	Shift	Limit ^{*)}	Result
[m ³ /h]	test	test	[%]	[%]	+/-	[%]	[%]	+/-

			SI	becimen number				
Flow	Error	r [%]	Limit before	Limit after				
rate	before the durability	after the durability	durability (MPE)	durability (2 MPE)	Result	Shift	Limit ^{*)}	Result
[m ³ /h]	test	test	[%]	[%]	+/-	[%]	[%]	+/-

	Specimen number							
Flow	Error	r [%]	Limit before	Limit after				
rate	before the durability	after the durability	durability (MPE)	durability (2 MPE)	Result	Shift	Limit ^{*)}	Result
[m ³ /h]	test	test	[%]	[%]	+/-	[%]	[%]	+/-

 $^{*)}$ MPE for class 1.5 or 1/2 MPE for other classes.

Passed	Yes	No
--------	-----	----

F.10 Drive shaft (torque) (12.6.10)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The gas meter is exposed to the maximum permissible torque with the following characteristics:

- torque : ... N.mm

•

- type of gas
- pressure during the test :

Specimen number						
Flow	Error [%]			Limit		
rate	without any	with maximum	Shift	(¹ / ₃ MPE)	Result	
[m ³ /h]	torque	torque	[%]	[%]	+/-	
Q_{\min}						

Passed Yes No

F.11 Overload flow (12.6.11)

Observer:	
Date:	

:

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to an overload flow rate with the following characteristics:

- overload flow rate : $1.2 Q_{\text{max}}$
- duration : 1 hour
- type of gas :
- pressure during the test

			-	becimen number				
Flow		r [%]	Limit before overload	Limit after overload			Limit	
rate	before overload	after overload	flow (MPE)	flow (MPE)	Result	Shift	(¹ / ₃ MPE)	Result
[m ³ /h]	flow	flow	[%]	[%]	+/-	[%]	[%]	+/-

Passed	Yes	No
--------	-----	----

F.12 Different gases (12.6.12)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is examined with the gases as stated in the table below.

Pressure during the test :

Specimen number					
Flow	Error [%]			Limit	
rate	with	with	with	(MPE)	Result
[m ³ /h]	air			[%]	+/-

Intermediate adjustments are necessary to meet the requirements:

Specified range of operating gases:

Passed Yes No	
---------------	--

F.13 Vibrations and shocks (12.6.13)

Observer:	
Date:	

Temperature during the test (°C): .. ± ..

The gas meter is exposed to vibrations and shocks having the following characteristics:

vibrations:

total frequency range : 10 Hz - 150 Hztotal RMS level : 7 m.s^{-2} ASD level 10 - 20 Hz : $1 \text{ m}^2.\text{s}^{-3}$ -

_

- -
- ASD level 20 150 Hz : –3 dB/octave _

:

shocks:

- height of fall : 50 mm
- type of gas _
- pressure during the test : -

	Specimen number					
Flow	Erro	r [%]		Limit		
rate	before	after	Shift	(1/2 MPE)	Result	
[m ³ /h]	vibrations	vibrations	[%]	[%]	+/-	
Flow	Erro	r [%]		Limit		
rate	before	after	Shift	(1/2 MPE)	Result	
[m ³ /h]	shocks	shocks	[%]	[%]	+/-	

Passed Yes	No
------------	----

F.14 Interchangeable components (12.6.14)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The following component in the gas meter can be exchanged:

The accuracy of the gas meter is determined while using the starting configuration, after interchange of the component and after reinstalling the original component.

Type of gas : Pressure during the test :

	Specimen number					
Flow rate [m ³ /h]		Starting configuration	After interchange	After reinstalling	Max. difference (¼ MPE) [%]	Result +/-
0	Error [%]					
$Q_{\rm t}$	Shift [%]					

Passed	Yes	No
--------	-----	----

F.15 Electronics (12.6.15)

The electronics are examined by means of the tests as stated below.

Examined part : complete gas meter / separate electronic device (to be indicated)

Conditions during the tests Type of gas : Pressure :

F.15.1 Dry heat (A.4.1.1)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

At the upper specified temperature the accuracy of the gas meter is examined.

Applied test method: with actual flow

	Specimen number				
Flow	Error [%]	Limit	Result		
rate		(MPE)			
[m ³ /h]	at °C	[%]	+/-		

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

		Specime	n number			
Applied temperature [°C]	Indicated flow rate during no-flow conditions Q_0 [m ³ /h]	Calculated Δe at Q_{\min} [%]	Error at Q _{min} [%]	Calculated error (= error at $Q_{\min} + \Delta e$) [%]	Limit (MPE) [%]	Result +/-
at °C (reference)						
at °C						
at °C (reference)						

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{temp}} - Q_{0,\text{ref}}}{Q_{\min}} \times 100 \%$$

Passed Yes No	
---------------	--

F.15.2 Cold (A.4.1.2)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

At the lower specified temperature the accuracy of the gas meter is examined.

Applied test method: with actual flow

Specimen number				
Flow	Error [%]	Limit	Result	
rate		(MPE)		
[m ³ /h]	at °C	[%]	+/-	

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

	Specimen number							
Applied temperature [°C]	Indicated flow rate during no-flow conditions Q_0 [m ³ /h]	Calculated Δe at Q_{\min} [%]	Error at Q _{min} [%]	Calculated error (= error at $Q_{\min} + \Delta e$) [%]	Limit (MPE) [%]	Result +/-		
at °C (reference) at °C at °C (reference)								

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{temp}} - Q_{0,\text{ref}}}{Q_{\min}} \times 100 \%$$

F.15.3 Damp heat, steady-state (non-condensing) (A.4.2.1)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The gas meter is exposed to the upper temperature at 93 % RH for 4 days.

The accuracy of the gas meter is examined:

- at reference conditions before the increase of the temperature;
- at the end of the upper temperature phase;
- at reference conditions, 24 h after the decrease of temperature.

Applied test method: with actual flow

	Specimen number						
Flow		Error [%]		Limit	Result		
rate	at °C	at °C	at °C	(MPE)			
[m ³ /h]	(ref. conditions)		(ref. conditions)	[%]	+/-		

Applied test method: at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

	Specimen number							
Applied temperature [°C]	Indicated flow rate during no-flow conditions $Q_0 [m^3/h]$	Calculated Δe at Q_{\min} [%]	Error at Q_{\min} [%]	Calculated error (= error at $Q_{\min} + \Delta e$) [%]	Limit (MPE) [%]	Result +/-		
at °C (reference)								
at °C								
at °C (reference)								

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{temp}} - Q_{0,\text{ref}}}{Q_{\min}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.4 Damp heat, cyclic (condensing) (A.4.2.2)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to two cyclic temperature variations between the lower temperature and the upper temperature, with the RH above 95 % during the temperature change and low temperature phases, and at or above 93 % RH at the upper temperature phases.

The accuracy of the gas meter is examined:

- at reference conditions before the increase of the temperature;
- at reference conditions, at least 4 h after the last cycle.

Applied test method: with actual flow

Specimen number						
Flow	Error [%]		Fault limit			
rate	at ref. co	onditions	Shift	(1/2 MPE)	Result	
[m ³ /h]	before	after	[%]	[%]	+/-	

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number						
Applied temperature Indicated flow rate during no-flow conditions Q ₀ [m ³ /h]		Calculated Δe at Q_{\min} [%]	Fault limit (½ MPE) [%]	Result		
at °C (reference), before at °C (reference), after	£0[]		[···]			

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{ref, after}} - Q_{0,\text{ref, before}}}{Q_{\text{min}}} \times 100 \%$$

Pass		Yes	No
------	--	-----	----

F.15.5 Vibration (random) (A.5.1)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The gas meter is exposed to vibrations with the following characteristics:

- total frequency range : 10 Hz 150 Hz
- total RMS level $: 7 \text{ m.s}^{-2}$
- ASD level 10 20 Hz : $1 \text{ m}^2 \text{ s}^{-3}$
- ASD level 20 150 Hz : –3 dB/octave

Applied test method: with actual flow

	Specimen number						
Flow	Erro	r [%]	Fault limit				
rate	before	after	Shift	(1/2 MPE)	Result		
[m ³ /h]	vibrations	vibrations	[%]	[%]	+/-		

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number				
Condition Indicated flow rate during no-flow conditions $Q_0 [m^3/h]$		Calculated Δe at Q_{\min} [%]	Fault limit (½ MPE) [%]	Result +/-
Reference conditions, before				
Reference conditions, after				

 $Q_{\min} = \ldots m^3/h$

$$\varDelta e = \frac{Q_{0,\text{ref, after}} - Q_{0,\text{ref, before}}}{Q_{\min}} \times 100 \%$$

Passed Yes No

F.15.6 Mechanical shock (A.5.2)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to a shock with the following characteristics:

- height of fall : 50 mm

Applied test method: with actual flow

	Specimen number				
Flow	Erro	r [%]		Fault limit	
rate	before	after	Shift	(1/2 MPE)	Result
[m ³ /h]	shocks	shocks	[%]	[%]	+/-

Applied test method: at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number				
Condition	Calculated ∆e	Fault limit (½ MPE)	Result	
	conditions $Q_0[m^3/h]$		[%]	+/-
Reference conditions, before				
Reference conditions, after				

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{ref, after}} - Q_{0,\text{ref, before}}}{Q_{\text{min}}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.7 Radiated, RF, electromagnetic fields (A.6.1.1)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to radio-frequency. electromagnetic fields with the following characteristics:

- frequency range : MHz 3 GHz *)
- field strength

modulation

_

- : 10 V/m : 80 % AM, 1 kHz, sine wave
- step size : 1 % of the preceding frequency value **)

Applied test method: with actual flow

	Specimen number					
Flow	Radiated field condition			Fault limit		
rate		Measured	Shift	(MPE)	Result	
[m ³ /h]		error [%]	[%]	[%]	+/-	
	No field					
	Horizontal polarised field					
	Vertical polarised field					

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number					
Radiated field condition	Indicated flow rate during no-flow conditions Q_0	Calculated	Fault limit		
	[m ³ /h]	Δe	(MPE)	Result	
		at Q_{\min} [%]	[%]	+/-	
No field					
Horizontal polarized field					
Vertical polarized field					

 $Q_{\min} = \ldots m^3/h$

Influence Δe at Q_{\min} is calculated as follows:

$$\Delta e = \frac{Q_{0,\text{frequency}} - Q_{0,\text{no field}}}{Q_{\text{min}}} \times 100 \%$$

Passed Yes	No
------------	----

*) Start frequency of the sweep 26 MHz or 80 MHz depending on whether cabling is applied

^{**}) A stepwise frequency sweep is performed over the whole frequency range. At each step a measurement is performed and the fault value calculated. However, in the test report the results of individual frequencies can be combined by presenting the overall result over the whole frequency range. Details on extremes, where relevant, shall be reported separately.

F.15.8 Conducted radio-frequency fields (A.6.1.2)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The gas meter is exposed to radio-frequency electromagnetic currents with the following characteristics:

- frequency range : 0.15 MHz 80 MHz
- RF voltage amplitude : $10 \text{ V e.m.f.} (50 \Omega)$
- modulation : 80 % AM, 1 kHz, sine wave

Applied test method: with actual flow

Specimen number					
Flow	Cable which is			Fault limit	
rate	exposed to the	Measured	Shift	(MPE)	Result
[m ³ /h]	RF currents	error [%]	[%]	[%]	+/-
	None (reference conditions)				
	Power cable				
	Cable				
	Cable				
	Cable				

Applied test method: at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number				
Cable which is	Indicated flow rate during		Fault limit	
exposed to the	no-flow conditions Q_0	Calculated Δe	(MPE)	Result
conducted fields	[m ³ /h]	at Q_{\min} [%]	[%]	+/-
None (reference conditions)				
Power cable				
Cable				
Cable				
Cable				

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{cable}} - Q_{0,\text{ref. conditions}}}{Q_{\min}} \times 100 \%$$

Passed Yes	
--------------	--

F.15.9 Electrostatic discharge (A.6.2)

Observer:	
Date:	

Temperature during the test (°C):

.. ± ..

The gas meter is exposed to electrostatic discharges with the following characteristics:

- contact discharges : 6 kV
- air discharges : 8 kV

Applied test method: with actual flow

		Specimen number			
Flow	Applied	Measured		Fault limit	
rate	discharges	error	Shift	(1/2 MPE)	Result
[m ³ /h]		[%]	[%]	[%]	+/-
	None (reference conditions)				
	Contact discharges positive				
	Contact discharges negative				
	Air discharges positive				
	Air discharges negative				
	None (reference conditions)				

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number				
Applied	Indicated flow rate	Fault limit		
discharges	during no-flow conditions Q_0	Calculated Δe	(1/2 MPE)	Result
	[m ³ /h]	at Q_{\min} [%]	[%]	+/-
None (reference conditions)				
Contact discharges positive				
Contact discharges negative				
Air discharges positive				
Air discharges negative				
None (reference conditions)				

$Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{discharges}} - Q_{0,\text{ref. conditions}}}{Q_{\text{min}}} \times 100\%$$

Passed	Yes	No
--------	-----	----

F.15.10 Bursts (transients) on signal, data and control lines (A.6.3)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to bursts (transients) on the signal, data and control lines, with the following characteristics:

- amplitude (peak value) : 1 kV
- repetition rate : 5 kHz

Applied test method: with actual flow

Specimen number					
Flow	Cable which is	Measured		Fault limit	
rate	exposed to	error	Shift	(1/2 MPE)	Result
[m ³ /h]	bursts	[%]	[%]	[%]	+/-
	None (reference conditions)				
	Cable				
	Cable				
	Cable				

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number				
Cable which is	Indicated flow rate		Fault limit	
exposed to	during no-flow conditions Q_0	Calculated Δe	(1/2 MPE)	Result
bursts	[m ³ /h]	at Q_{\min} [%]	[%]	+/-
None (reference conditions)				
Cable				
Cable				
Cable				

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{bursts}} - Q_{0,\text{ref. conditions}}}{Q_{\text{min}}} \times 100\%$$

Passed Yes No

F.15.11 Surges on signal, data and control lines (A.6.4)

Observer:	
Date:	

Femperature (during the	test (°C):
---------------	------------	------------

.. ± ..

The gas meter is exposed to surges on the signal, data and control lines, with the characteristics as stated in the table below.

Applied test method: with actual flow

	Specimen number							
Flow	Cable which is			Measured		Fault limit		
rate	exposed to the	Cable	Test condition	error	Shift	(1/2 MPE)	Result	
[m ³ /h]	surges	classification	[kV]	[%]	[%]	[%]	+/-	
	None (reference conditions)							
	Cable	Unsymmetrical line	Line to line: 0.5					
	Cable	Unsymmetrical line	Line to ground: 1.0					
	Cable	Symmetrical line	Line to ground: 1.0					
	None (reference conditions)	Shielded I/O	Line to ground: 0.5					

Applied test method: at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

	Specimen number						
Cable which is			Indicated flow rate	Calculated	Fault limit		
exposed to the	Cable	Test condition	during no-flow	∆e	(1/2 MPE)	Result	
surges	classification	[kV]	conditions $Q_0 [m^3/h]$	at Q_{\min} [%]	[%]	+/-	
None (reference conditions)							
Cable	Unsymmetrical line	Line to line: 0.5					
Cable	Unsymmetrical line	Line to ground: 1.0					
Cable	Symmetrical line	Line to ground: 1.0					
None (reference conditions)	Shielded I/O	Line to ground: 0.5					

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{surges}} - Q_{0,\text{ref. conditions}}}{Q_{\text{min}}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.12 DC mains voltage variation (A.7.1)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to DC mains voltage variations between the upper and lower limit.

Applied test method: with actual flow

	Specimen number						
Flow		Measured	Limit				
rate	Applied voltage	error	(MPE)	Result			
[m ³ /h]	[V]	[%]	[%]	+/-			
	(reference conditions)						
	(upper limit)						
	(lower limit)						

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

	Specimen number						
	Indicated flow rate	Calculated	Error at	Calculated error	Limit		
Applied voltage	during no-flow	∆e	Q_{\min}	$(= \text{ error at } Q_{\min} + \Delta e)$	(MPE)	Result	
[V]	conditions Q_0 [m ³ /h]	at Q_{\min} [%]	[%]	[%]	[%]	+/-	
(reference conditions)							
(upper limit)							
(lower limit)							

$Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{voltage}} - Q_{0,\text{ref. conditions}}}{Q_{\min}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.13 AC mains voltage variation (A.7.2)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The gas meter is exposed to AC mains voltage variations. The following limits apply:

- upper limit : $U_{\text{nom}} + 10 \%$

- lower limit : $U_{\text{nom}} - 15 \%$

Applied test method: with actual flow

	Specimen number						
Flow		Measured	Limit				
rate	Applied voltage	error	(MPE)	Result			
[m ³ /h]	[V]	[%]	[%]	+/-			
	(reference conditions)						
	(upper limit)						
	(lower limit)						

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

	Specimen number						
Applied voltage [V]	Indicated flow rate during no-flow conditions Q_0 [m ³ /h]	Calculated Δe at Q_{\min} [%]	Error at Qmin [%]	Calculated error (= error at $Q_{\min} + \Delta e$) [%]	Limit (MPE) [%]	Result	
(reference conditions)		ut ginn [70]	[/0]	[/0]	[/0]	17	
(upper limit) (lower limit)							

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0, \text{voltage}} - Q_{0, \text{ref. conditions}}}{Q_{\min}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.14 AC mains voltage dips and short interruptions (A.7.3)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to AC mains voltage dips and short interruptions, with the characteristics as stated in the table below.

Applied test method: with actual flow

	Specimen number					
Flow	Voltage reduct	tion	Measured		Fault limit	
rate	Reduction to	Duration	error	Shift	(1/2 MPE)	Result
[m ³ /h]	[%]	[cycles]	[%]	[%]	[%]	+/-
	no reduction (ref. conditions)					
	0	0.5				
	0	1				
	40	10 / 12				
	70	25 / 30				
	80	250 / 300				

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

			Specimen	number			
		Indicated flow	Calculated	Error at	Calculated error	Fault limit	
Reduction to	Duration	rate during no- flow conditions	Δe	$Q_{ m min}$	$(= \text{ error at } Q_{\min} + \Delta e)$	(1/2 MPE)	Result
[%]	[cycles]	$Q_0 [\mathrm{m^3/h}]$	at Q_{\min} [%]	[%]	[%]	[%]	+/-
No reduction (ref. conditions)							
0	0.5						
0	1						
40	10 / 12						
70	25 / 30						
80	250 / 300						

$Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{reduction}} - Q_{0,\text{ref. conditions}}}{Q_{\min}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.15 Voltage dips, short interruptions and voltage variations on DC mains power (A.7.4)

Observer:	
Date:	

Temperature during the test (°C):

: ... ± ..

The gas meter is exposed to DC mains voltage dips, short interruptions and voltage variations, with the characteristics as stated in the table below.

Applied test method: with actual flow

		Specimen n	umber			
Flow	Voltage reduct	tion	Measured		Fault limit	
rate	Voltage amplitude	Duration	error	Shift	(1/2 MPE)	Result
[m ³ /h]	[%]	[ms]	[%]	[%]	[%]	+/-
	No reduction (ref. conditions)					
		10				
	40	30				
		100				
		10				
	70	30				
		100				
		1				
	0	3				
		10				
		duration				
		[s] 0.1				
		0.3				
	85	1				
	05	3				
		10				
		0.1				
		0.3				
	120	1				
	120	3				
		10				

			Specimen	number			
		Indicated flow	Calculated	Error at	Calculated error	Fault limit	
Voltage amplitude	Duration	rate during no- flow conditions	Δe	Q_{\min}	$(= \operatorname{error} \operatorname{at} Q_{\min} + \Delta e)$	(1/2 MPE)	Result
[%]	[ms]	$Q_0 [{ m m}^3/{ m h}]$	at Q_{\min} [%]	[%]	[%]	[%]	+/-
No reduction (ref. conditions)							
	10						
40	30						
	100						
	10						
70	30						
	100						
	1						
0	3						
	10						
	Duration						
	[s]						
	0.1						
	0.3						
85	1						
	3						
	10						
	0.1						
	0.3						
120	1						
	3						
	10						

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

$Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{reduction}} - Q_{0,\text{ref. conditions}}}{Q_{\min}} \times 100\%$$

Passed	Yes	No
--------	-----	----

F.15.16 Bursts (transients) on AC and DC mains (A.7.5)

Observer:	
Date:	

Temperature during the test (°C):

C): ... ± ..

The gas meter is exposed to bursts (transients) on the mains, with the following characteristics:

- amplitude (peak value) : 2 kV
- repetition rate : 5 kHz

<u>Applied test method:</u> with actual flow

		Specimen number			
Flow	Object which is	Measured		Fault limit	
rate	exposed to the	error	Shift	(1/2 MPE)	Result
[m ³ /h]	bursts	[%]	[%]	[%]	+/-
	None (reference conditions)				
	Mains power cable				

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number				
Object which is	Indicated flow rate during no-flow		Fault limit	
exposed to the	conditions Q_0	Coloulated	(1/2 MPE)	Result
conducted fields	[m ³ /h]	at Q_{\min} [%]	[%]	+/-
None (reference conditions)				
Mains power cable				

 $Q_{\min} = \dots m^3/h$

$$\Delta e = \frac{Q_{0,\text{bursts}} - Q_{0,\text{ref. conditions}}}{Q_{\text{min}}} \times 100 \%$$

Passed Yes	
--------------	--

F.15.17 Surges on AC and DC mains (A.7.6)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to surges on the mains, with the characteristics as stated in the table below.

Applied test method: with actual flow

	Specimen number						
Flow	Object which is		Measured		Fault limit		
rate	exposed to the	Test condition	error	Shift	(1/2 MPE)	Result	
[m ³ /h]	surges	[kV]	[%]	[%]	[%]	+/-	
None (ref. conditions)							
Mains power cable Line to line: 1.0							
	Mains power cable	Line to ground: 2.0					

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number						
Object which is		Indicated flow rate		Fault limit		
exposed to the	Test condition	during no-flow	Δe	(½ MPE)	Result	
surges	[kV]	conditions Q_0 [m ³ /h]	at Q_{\min} [%]	[%]	+/-	
None (ref. Conditions)						
Mains power cable	Line to line: 1.0					
Mains power cable Line to ground: 2.0						

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{surges}} - Q_{0,\text{ref. conditions}}}{Q_{\text{min}}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.15.18 Ripple on DC mains power (A.7.7)

Observer:	
Date:	

Temperature during the test (°C): $.. \pm ..$

The gas meter is exposed to ripple voltages on the DC mains, with the following characteristics:

- percentage of the nominal DC voltage : 2 %

Applied test method: with actual flow

	Specimen number					
Flow	Object which is	Measured	Fault	imit		
rate exposed to the		error	Shift	(1/2 MPE)	Result	
[m ³ /h]	[m ³ /h] ripple on DC voltage		[%]	[%]	+/-	
None (reference conditions)						
	Mains power cable					

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

Specimen number					
Object which is			Fault limit		
exposed to the	during no-flow conditions Q_0	Calculated Δe	(1/2 MPE)	Result	
ripple on DC voltage [m ³ /h]		at <i>Q</i> _{min} [%]	[%]	+/-	
None (reference conditions)					
Mains power cable					

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{ripple}} - Q_{0,\text{ref. conditions}}}{Q_{\min}} \times 100 \%$$

Passed Yes No

F.15.19 Low voltage of internal battery (not connected to the mains power) (A.8)

Observer:	
Date:	

Temperature during the test (°C): $\dots \pm \dots$

The gas meter is exposed to low battery voltage conditions as indicated in the table below.

Specifications:

- nominal battery supply voltage U_{nom} [V] :
- minimum battery supply voltage U_{bmin} [V] :

Applied test method: with actual flow

Specimen number						
Flow		Measured Limit				
rate	Applied voltage	error	(MPE)	Result		
[m ³ /h]	[V]	[%]	[%]	+/-		
	$U_{\rm nom}$ (reference conditions)					
	$U_{ m bmin}$					
	0.0.11	Low battery vo	ltage alarm			
	$0.9 U_{\rm bmin}$	Ye	s	No		

<u>Applied test method:</u> at no-flow conditions while monitoring the unsuppressed flow rate output of the meter

	Specimen number					
Applied voltage [V]	Indicated flow rate during no-flow conditions Q_0 [m ³ /h]	Calculated Δe at Q_{\min} [%]	Error at Q _{min} [%]	Calculated error (= error at $Q_{\min} + \Delta e$) [%]	Limit (MPE) [%]	Result +/-
$U_{\rm nom}$ (reference conditions)						
$U_{ m bmin}$						
0.9 U _{bmin} Low battery voltage alarm Ves No				·		

 $Q_{\min} = \ldots m^3/h$

$$\Delta e = \frac{Q_{0,\text{voltage}} - Q_{0,\text{ref.conditions}}}{Q_{\min}} \times 100 \%$$

Passed	Yes	No
--------	-----	----

F.16 Influences from ancillary devices (12.6.16)

:

Observer:	
Date:	

Temperature during the test (°C): .. ± ..

The effect of the following ancillary device to the gas meter is examined:

-

Type of gas

Pressure during the test :

Specimen number					
Flow rate [m ³ /h]		No function of ancillary device	With function of ancillary device	Max. difference (¹ / ₁₀ MPE) [%]	Result +/-
Q_{\min}	Error [%]				
	Shift [%]				

Passed	Yes	No
--------	-----	----