International Recommendation

OIML R 111-2

Edition 2004 (E)

Weights of classes $\rm E_1$, $\rm E_2$, $\rm F_1$, $\rm F_2$, $\rm M_1$, $\rm M_{1-2}$, $\rm M_2$, $\rm M_{2-3}$ and $\rm M_3$

Part 2: Test Report Format

Poids des classes E_1 , E_2 , F_1 , F_2 , M_1 , M_{1-2} , M_2 , M_{2-3} et M_3

Partie 2: Format du rapport d'essai

Organisation Internationale de Métrologie Légale

International Organization of Legal Metrology

Contents

Foreword	3
Explanatory notes	4
General information on the type	5
Summary of the classification.	6
Checklist – General requirements for all weight classes	7
Checklist – E ₁ and E ₂ weights.	9
Checklist – F ₁ and F ₂ weights	11
Checklist – M ₁ , M ₁₋₂ , M ₂ , M ₂₋₃ and M ₃ weights	13
Surface conditions	16
Magnetization	17
Susceptibility	18
Density determination – Method A	19
Density verification – Method B	21
Limit density values	22
Density determination – Method C	23
Density determination – Method D	24
Density determination – Method E	25
Density determination – Method F	26
Comparison of the test weight using one reference weight and cycle ABBA	27
Comparison of the test weight using one reference weight and cycle ABA	28
Comparision of the test weight using one reference weight and cycle AB_1B_nA	29
Standard uncertainty of the weighing process, $u_{ m w}$	31
Uncertainty of the reference weight, $u(m_{cr})$	33
Standard uncertainty of the air buoyancy corrections, u_b	34
Standard uncertainty of the balance, u_{ba}	36
Expanded uncertainty, $U(m_{ct})$	37

Foreword

The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization whose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States.

The two main categories of OIML publications are:

- International Recommendations (OIML R), which are model regulations that establish the metrological characteristics required of certain measuring instruments and which specify methods and equipment for checking their conformity; the OIML Member States shall implement these Recommendations to the greatest possible extent;
- International Documents (OIML D), which are informative in nature and intended to improve the work of the metrology services.

OIML Draft Recommendations and Documents are developed by technical committees or subcommittees which are formed by Member States. Certain international and regional institutions also participate on a consultation basis.

Cooperative agreements are established between OIML and certain institutions, such as ISO and IEC, with the objective of avoiding contradictory requirements; consequently, manufacturers and users of measuring instruments, test laboratories, etc. may apply simultaneously OIML publications and those of other institutions.

International Recommendations and International Documents are published in French (F) and English (E) and are subject to periodic revision.

This publication - OIML R 111-2, Edition 2004 (E) - was developed by TC 9/SC 3 Weights.

OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional information on OIML Publications may be obtained from the Organization's headquarters:

Bureau International de Métrologie Légale

11, rue Turgot - 75009 Paris - France

Telephone: 33 (0)1 48 78 12 82 Fax: 33 (0)1 42 82 17 27 E-mail: biml@oiml.org Internet: www.oiml.org

Explanatory notes

This Annex is mandatory according to 15.1 of R 111-1.

For each test, the "SUMMARY OF TYPE EVALUATION" and the appropriate "CHECKLIST" shall be completed according to this example:

Test conducted	Pass	Fail
When the weight has passed the test:	X	
When the weight has failed the test:		X
When the test is not applicable:		

The white spaces in boxes in the headings of the report should always be filled in according to the following example:

	At start	At end	
Temperature:	20.5	20.6	°C
Relative humidity:			%
Dew point:			°C
Barometric pressure:			hPa
Air density:			kg m ⁻³
Time:	11:55	12:08	hh:mm

[&]quot;Date" in the test reports refers to the date on which the test was performed.

Weights of classes E_1 , E_2 , F_1 , F_2 , M_1 , $M_{1\text{-}2}$, M_2 , $M_{2\text{-}3}$ and M_3

General information on the type

Application no.:					
Type designation:					
Accuracy class: According to the manufacturer	E_1 M_1	E_2 M_{1-2}	F_1 M_2	F ₂	M ₃
Weight set submitted:					
Identification no.:					
Date of report:					
Observer:					

Summary of the classification

	Application no.:					
	Type designation:					
W	eight set is classified as:		• • • • • • • • • • • • • • • • • • • •			
	Tests	Report page	Pass	Fail	Class	Remarks
	Checklist					
1	Surface conditions					
2	Magnetism					
3	Density					
4	Calibration					
Ren	narks:					
			•••••			
••••			•••••			
			•••••			
••••			•••••			
••••	•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	

CHECKLIST – General requirements for all weight classes

Application no.:	
Type designation:	
Weight set is classified as:	

Use only one checklist for a set of weights. Do not use a separate checklist for each weight when classifying an entire set. It is sufficient to list the differences for individual weights in the "Remarks" column.

R 111-1 ref.	Requirement	Pass	Fail	Remarks
4	Units and nominal values for weights			
4.1	Units			
	Mass in units of milligram (mg), gram, (g) or kilogram (kg)			
	Density in units of kilogram per cubic metre (kg m ⁻³)			
4.2	Nominal values			
	1×10^{n} , 2×10^{n} , or 5×10^{n}			
4.3.1	Weight sequence is:			
	$(1;1;2;5) \times 10^n$			
	$(1;1;1;2;5) \times 10^n$			
	$(1;2;2;5) \times 10^n$ or			
	$(1;1;2;2;5) \times 10^n$			
4.3.2	Weight set consists of <i>n</i> weight pieces each having nominal value <i>x</i>			
	<i>n</i> =			
	<i>x</i> =			
5	Maximum permissible errors on verification			
5.1.1	Table 1 MPEs for weights			
5.2	Expanded uncertainty: $U(k = 2) \le 1/3$ MPE in Table 1			
5.3.1	Conventional mass shall not differ from nominal value by more than mpe – expanded uncertainty			
6	Shape			
6.1	General			
6.1.1	Simple geometrical shape			
	No sharp edges or corners			
	No pronounced hollows			
6.1.2	Weights of a set are the same shape			
6.2	Weights ≤ 1 g			
6.2.1	Weights < 1 g:			
	Flat polygonal sheets or wires			
	Shape indicative of the nominal value			

6.2.2	1 g weights:			
	Flat polygonal sheets or wires			
	If not marked, shape indicative of the nominal			
	value as given in Table 2 A sequence of weights of a different shape shall			
6.2.3	not be inserted between two sequences of weights that have the same shape			
6.3	Weights 1 g to 50 kg:			
6.3.1	1 g weight: shape of multiples of 1 g weights or submultiples of 1 g weights			
6.3.2	Dimensions conform to Annex A			
6.3.2.1	May have cylindrical or slightly conical body, height of which is between 3/4 and 5/4 of its mean diameter			
6.3.2.2	May have lifting knob of height between $0.5 \times$ and $1 \times$ the mean diameter of the body			
6.3.3	Weights of 5 kg to 50 kg:			
	May have shape suitable for their method of handling			
	Instead of a lifting knob, may have a rigid handling device (e.g. axle, handle, hook or eye)			
6.4	Weights greater than or equal to 50 kg:			
6.4.1	Shape provides for safe storage and handling			
6.4.2	May have rigid handling device (e.g. axle, handle, hook, eye)			
8	Material			
8.1	Corrosion resistant			
	Material quality ensures change in mass of weights negligible in relation to MPE under normal use			
10	Density			
10.1	Density of the material such that a deviation of 10 % from the specified air density (1.2 kg m ⁻³) does not produce an error exceeding ½ MPE, see Table 5			
11	Surface conditions			
11.1	Surface qualities such that any alteration of the mass of the weights is negligible with respect to the maximum permissible error			
11.1.1	Surface of the weights (including the base and corners) smooth and edges rounded			
13	Marking			
13.1	General			
13.1.2	Marking of duplicate or triplicate weights according to requirements			

$CHECKLIST-E_1 \ and \ E_2 \ weights$

R 111-1 ref.	Requirement	Pass	Fail	Remarks
7	Construction			
7.1.1	Class E ₁ and E ₂ weights from 1 mg to 50 kg: Solid single piece with no cavity			
7.1.2.1	Class E ₂ weights greater than 50 kg: Adjusting cavity conforms to requirements			
7.1.2.2	Class E ₂ weights greater than 50 kg: Empty volume conforms to requirement			
8	Material			
8.2.1	For weights of 1 g or more hardness shall be equal to or better than austenitic stainless steel ¹			
9	Magnetism			
9.1	Meets polarization requirements in Table 3			
9.2	Meets susceptibility requirements in Table 4			
10	Density			
10.2.2	Weights are to be used at an altitude > 330 m: Density and associated uncertainty are documented			
11	Surface conditions			
11.1.2	Surface not porous			
	Surface presents a glossy appearance when visually examined			
12	Adjustment			
12.1	Surface requirements met after adjustment process			
13	Marking			
13.1	Nominal value - Table 7			
13.2	E ₁ and E ₂ weights			
	Class indicated on cover of case as E ₁ or E ₂			
	Class E_2 weights may bear an off-center point on the top surface to distinguish them from class E_1 weights			
	Surface quality and stability of the weight not affected by markings or by marking process			
13.6	User markings according to Table 7			
14	Presentation			
14.1.1	Lid of case containing the weights is marked with class in the form E ₁ or E ₂			
14.1.2	Weights of the same set are of same accuracy class			
14.2.1	Protected against deterioration or damage due to shock or vibration Case made of wood, plastic or any suitable material having individual cavities			
14.2.2	Means of handling such that it does not scratch or change weight surface			

Based on information from the manufacturer or measured on a test specimen of the same alloy that the weights are made of. Austenitic stainless steel normally has a hardness in the range 160 – 200 HV. Reference: R.B. Ross, Metallic materials specification handbook (1972).

R 111-1 ref.	Requirement	Pass	Fail	Remarks
15	Submission to metrological control			
15.2.2.1	For E ₁ weights, certificate states:			
	- conventional mass, m _c			
	- expanded uncertainty, ${\cal U}$			
	- coverage factor, k			
	- density or volume			
	- a statement on whether the density has been measured or estimated			
15.2.2.2	For E ₂ weights, certificate states:			
	- conventional mass, $m_{\rm c}$			
	- expanded uncertainty, ${\cal U}$			
	- coverage factor, k			
	or the information required for E ₁ weights calibration certificates			
16	Control marking			
16.2.1	Control marks may be affixed to the case			
16.2.2	Certificate given by metrological authorities			

$CHECKLIST-F_1 \ and \ F_2 \ weights$

R 111 Ref.	Requirement	Pass	Fail	Remarks
7	Construction			
7.2	Weights of one or more pieces manufactured from the same material			
7.2.1	Class F ₁ and F ₂ weights from 1 g to 50 kg			
7.2.1.1	Adjusting cavity conforms to requirements			
7.2.1.2	Empty volume conforms to requirement			
7.2.2	Class F ₁ and F ₂ weights greater than 50 kg			
	Box sufficiently rigid and airtight			
	Mass/volume ratio meets density requirement in Table 5			
7.2.2.1	Adjusting cavity conforms to requirements			
7.2.2.2	Empty volume conforms to requirement			
8	Material			
8.3	Surface of weights ≥ 1 g may have metallic coating			
8.3.1	Hardness of weights ≥ 1 g at least equal to that of drawn brass ¹			
	Brittleness of weights ≥ 1 g at least equal to that of drawn brass ²			
8.3.2	Hardness and brittleness of whole body or external surfaces of weights ≥ 50 kg at least equal to that of stainless steel			
9	Magnetism			
9.1	Meets polarization requirements in Table 3			
9.2	Meets susceptibility requirements in Table 4			
10	Density			
10.2.2	F ₁ weights to be used at an altitude > 800 m: Density and associated uncertainty are documented			
11	Surface conditions			
11.1.2	Surface not porous			
	Surface presents a glossy appearance when visually examined			
12	Adjustment			
12.2	Adjusted by method which does not alter surface			
	Weight with adjusting cavities adjusted with material from which they are made or stainless steel, brass, tin, molybdenum or tungsten			
13	Marking			
13.3	All class F weights ≥ 1 g: Indication of nominal value by burnishing or engraving as in 13.1 (not followed by the name or symbol of the unit)			

¹ Based on information from the manufacturer or measured on a test specimen of the same alloy that the weights are made of.

Normally not tested. Based on information from the manufacturer. The brittleness of brass is normally in the range 28 – 100 (Impact [J]).

R 111 Ref.	Requirement	Pass	Fail	Remarks
13.3.1	F ₁ weights: not to bear any class reference			
13.3.2	F_2 weights ≥ 1 g: bear a reference to their class in the form "F" together with indication of nominal value			
13.6	User markings according to Table 7			
14	Presentation			
14.1.1	Lids of cases containing weights marked to indicate their class in the form "F ₁ " or "F ₂ "			
14.1.2	Weights of same set are of same accuracy class			
14.2.1	Protected against deterioration or damage due to shock or vibration			
	Cases made of wood, plastic or any suitable material that has individual cavities			
14.2.2	Means of handling such that it does not scratch or change weight surface			
16	Control marking			
16.3.1	Class F ₁ weights: If the weights are subject to metrological controls, the marks shall be on the case			
16.3.2	Class F ₂ weights: If cylindrical F ₂ weights are subject to metrological controls, the appropriate control marks shall be affixed to the seal of the adjusting cavity. For weights without an adjusting cavity, the control marks shall be affixed to their base			

$CHECKLIST-M_1,\,M_{1\text{--}2},\,M_2,\,M_{2\text{--}3} \ and \ M_3 \ weights$

R 111 Ref.	Requirement	Pass	Fail	Remarks
6	Shape			
6.3.4	Weights of 5 kg to 50 kg may be rectangular parallelepipeds with rounded edges and rigid handle, as shown in Figures A.2 and A.3			
6.4.3	Class M weights > 50 kg equipped with roller tracks or grooves of limited area if they are intended to run on a flat floor or rails			
7	Construction			
7.3.1	Class M ₁ , M ₂ and M ₃ weights 1 g to 50 kg			
7.3.1.1	1 g to 10 g: solid with no adjusting cavity			
	20 g to 50 g: have optional adjusting cavities			
	100 g to 50 kg: shall have adjusting cavity (except for class M ₁ and M ₂ 20 g to 200 g weights made of stainless steel where it is optional)			
	Cavity design reduces buildup of debris			
	Cavity volume $\leq \frac{1}{4}$ of total volume of the weight			
7.3.1.2	Approximately half total volume of adjusting cavity empty after initial adjustment			
7.3.2	Cylindrical weights from 100 g to 50 kg:			
	Have adjusting cavity meeting requirements			
	Cavity can be closed and sealed by appropriate			
7.3.3	means 5 kg to 50 kg rectangular parallelepiped weights: shall have an adjusting cavity properly located			
7.3.3.1	Cavity on pipe handle weights can be closed with appropriate means			
7.3.3.2	Cavities on upright and opening to the side or top face of weight can be sealed by appropriate means			
7.3.4	Class M_1 , M_2 and M_3 weights > 50 kg and all class M_{1-2} and M_{2-3} weights			
7.3.4	Shall not have surface cavities that may cause rapid accumulation of dust or debris			
7.3.4.1	Have adjusting cavity meeting requirements			
7.3.4.2	At least one third of the total volume of the adjusting cavity empty after initial adjustment			
8	Material			
8.4	M_1 , M_2 and M_3 weights ≤ 50 kg			
	Weights ≥ 1 g may be treated with a suitable coating to improve corrosion resistance or hardness			
8.4.1	Weights < 1 g made of material sufficiently resistant to corrosion and oxidation			
8.4.2	Cylindrical class M_1 weights below 5 kg and class M_2 and M_3 weights below 100 g shall be made of brass or a material whose hardness and resistance to corrosion is similar or better than that of brass			

R 111 Ref.	Requirement	Pass	Fail	Remarks
	Other cylindrical class M ₁ , M ₂ and M ₃ weights of 50 kg or less shall be made of grey cast iron or of another material whose brittleness and resistance to corrosion is similar or better than that of grey cast iron			
8.4.3	Rectangular parallelepiped weights 5 kg to 50 kg: Made from material with corrosion resistance and brittleness equal to or better than grey cast iron.			
8.4.4	Handles of rectangular weights made of seamless steel tube or cast iron integral with the weight			
8.5	M_1 , M_2 and M_3 weights > 50 kg All M_{1-2} and M_{2-3} weights			
8.5.1	Surface may have a coating to improve corrosion resistance and capable of withstanding shocks and outdoor weather conditions			
8.5.2	Material has corrosion resistance at least equal to grey cast iron			
8.5.3	Material of such hardness and strength that it withstands loads and shocks that will occur under normal conditions of use			
8.5.4	Handles of rectangular weights made of seamless steel tube or cast iron integral with the weight			
9	Magnetism			
9.1	Meets polarization requirements in Table 3			
11	Surface conditions			
11.1.3	M ₁ , M ₂ and M ₃ cylindrical weights 1 g to 50 kg: Surface smooth and not porous when visually examined M ₁ , M ₂ and M ₃ cast weights 100 g to 50 kg, M ₁₋₂ and M ₂₋₃ weights > 50 kg: Surface finish similar to grey cast iron carefully			
12	cast in a sand mould Adjustment			
12.3.1	Thin sheet and wire weights 1 mg to 1 g:			
12.3.2	Adjusted by cutting abrasion or grinding Cylindrical weights without cavities: Adjusted by grinding			
12.3.3	Weights with adjusting cavity adjusted by adding dense metallic material. If no more material can be removed, may be adjusted by grinding			
13	Marking			
13.4.1	Rectangular weights 5 kg to 5 000 kg: Nominal value of weight, followed by the "kg" symbol in hollow or relief on body of weight			
13.4.2	Cylindrical weights 1 g to 5 000 kg: Nominal value of weight, followed by the "g" or "kg" symbol in hollow or relief on knob Cylindrical weights 500 g to 5 000 kg: Indication may be reproduced on the cylindrical			
12.12	surface of the weight's body M ₁ weights:			
13.4.3	"M ₁ " or "M" marked in hollow or relief, with the indication of the nominal value			
	Rectangular M ₁ weights may bear manufacturer's mark in hollow or relief on center part of weight			

R 111 Ref.	Requirement	Pass	Fail	Remarks
13.4.4	M ₂ rectangular weights: May bear "M ₂ " in hollow or relief, with the indication of the nominal value			
13.4.5	M ₃ rectangular weights: "M ₃ " or "X" in hollow or relief, with the indication of the nominal value			
13.4.6	 M₂ and M₃ weights (except wire weights) may bear manufacturer's mark in hollow or in relief: On the center part of rectangular weights; on the upper face of the knob of cylindrical weights; or on the upper face of the cylinder for class M₃ cylindrical weights fitted with a handle 			
13.4.7	Class M_3 weights ≥ 50 kg: Nominal value in numerals followed by the unit's symbol			
13.5	 M₁₋₂ and M₂₋₃ weights: Shall bear "M₁₋₂" or "M₂₋₃" in hollow or relief with the nominal value, followed by "kg"; May bear manufacturer's mark in hollow or relief on upper face, of similar size to that for M₁, M₂ and M₃ weights 			
13.6	User markings according to Table 7			
14	Presentation			
14.1.1	M ₁ weights: Lid of case containing weights marked "M ₁ "			
14.1.2	Weights of same set shall be same accuracy class			
14.3.1	Cylindrical M_1 weights ≤ 500 g contained in case with individual cavities			
14.3.2	Thin sheet and wire M ₁ weights:			
	Contained in cases which have individual cavities			
	Class reference "M ₁ " on the cover of the case			
16	Control marking			
16.4.1	Class M ₁ , M ₂ and M ₃ weights: If subject to metrological controls, appropriate control marks shall be affixed to the seal of the adjusting cavity. For weights with no adjusting cavity, the marks shall be affixed to their base			
16.4.2	Thin plate and wire class M ₁ weights: If subject to metrological controls, appropriate control marks shall be affixed to the case			

SURFACE CONDITIONS (11, B.5)

App	lication n										
Type	designation	on:									
	Da	ite:									
		Refer	to Table 6 in F	R 111-1	for ma	aximum values	s of surfac	ce roughne	ess.		
Weight	R _a μm	R _z μm	Method ¹ (CS/SI)	Pass	Fail	Weight	R _a μm	R _z μm	Method ¹ (CS/SI)	Pass	Fail
	≤	≤					≤	≤			
	<u>≤</u>	<u>≤</u>					≤	≤			
	≤	≤					≤	≤			
	≤	\leq					≤	≤			
	≤	\leq					≤	≤			
	≤	≤					≤	≤			
	<u>≤</u>	<u>≤</u>					≤	≤			
	≤	S					S	S			
	≤	≤					≤	≤			
	≤	S					S	S			
	<u> </u>	<u>≤</u>					<u>≤</u>	<u> </u>			
¹ Enter eith	er "CS" f	or Compa	rison Specime	en or "S	I" for S	Stylus Instrum	ent accor	ding to me	ethod used		
Pas	ssed		Failed	the	e accur	acy class that v	was speci	fied by the	e manufacture	r	
Remarks:											

MAGNETIZATION (9, B.6.1, B.6.2, B.6.4)

Type designation: Date: Starting time: Refer to Table 3 in R 111-1 for maximum polarization, \(\mu_{\text{th}}\mu/\mu\)T Weight (nominal) \[\begin{array}{c c c c c c c c c c c c c c c c c c c	Application no.:		•••••			••••••	•••••
Starting time: Ending time:	•••••						•••••
Refer to Table 3 in R 111-1 for maximum polarization, $\mu_0 M / \mu T$ Weight (nominal) \begin{align*} \frac{\mu_0 M / \mu T}{\mathrm{(Top)}} & \text{Uncertainty} & \text{Method Used}^1 \ \frac{\mu}{S/H/F} & \text{Pass} & \text{Fail} \] \frac{\mu}{\mu} & \mu	Date:						
Weight (nominal) μ₀M / μT Uncertainty (k =) Method Used¹ Pass Fail	Starting time:			Ending t	ime:		
Cop (Bottom) (k =) S/H/F Pass Fail	F	Refer to Tab	le 3 in R 111	I-1 for maximum pol	larization, $\mu_0 M / \mu T$		
the accuracy class that was specified by the manufacturer	Weight (nominal)	$\mu_0 M / \mu T$		Uncertainty		Pass	Fail
### ### ##############################		(Top)	(Bottom)		S/H/F		
### ### ##############################							
### ### ##############################							
### ### ##############################							
### ### ##############################							
### ### ##############################							
### ### ##############################							
### ### ##############################				±			
± ± ± ± ± 1 Enter either "S" for Susceptometer, "H" for Hall sensor or "F" for Fluxgate probe according to method used Passed Failed the accuracy class that was specified by the manufacturer				±			
± ± ± ± Enter either "S" for Susceptometer, "H" for Hall sensor or "F" for Fluxgate probe according to method used Passed Failed the accuracy class that was specified by the manufacturer				±			
± ± ± 1 Enter either "S" for Susceptometer, "H" for Hall sensor or "F" for Fluxgate probe according to method used Passed Failed the accuracy class that was specified by the manufacturer				±			
± ± ± 1 Enter either "S" for Susceptometer, "H" for Hall sensor or "F" for Fluxgate probe according to method used Passed Failed the accuracy class that was specified by the manufacturer				±			
± ± 1 Enter either "S" for Susceptometer, "H" for Hall sensor or "F" for Fluxgate probe according to method used Passed Failed the accuracy class that was specified by the manufacturer							
Enter either "S" for Susceptometer, "H" for Hall sensor or "F" for Fluxgate probe according to method used Passed Failed the accuracy class that was specified by the manufacturer							
Passed Failed the accuracy class that was specified by the manufacturer							
Passed Failed the accuracy class that was specified by the manufacturer							
	¹ Enter either "S" for Suscep	otometer, "H	" for Hall se	ensor or "F" for Flux	gate probe according to meth	od used	
Remarks:	Passed	Failed	the	accuracy class that v	vas specified by the manufac	turer	
	Remarks:						
						•••••	••••••
							•••••

SUSCEPTIBILITY (9, B.6.1, B.6.3, B.6.4, B.6.5, B.6.6)

Application no.:						
Type designation:						
Date:	••••••	•••••••			••••••	•••••
	•••••	·····			•••••	•••••
Starting time:			Ending ti	me:		
	Refer to	Table 4 in F	R 111-1 for maximum	susceptibility		
	χ		Uncertainty	Method Used ¹		
Weight (nominal)	χ (Top)	χ (Bottom)	(k =)	A/S/F/Sp	Pass	Fail
			±			
			±			
			±			
			±			
			±			
			土			
			±			
			±			
			±			
			土			
			±			
			土			
			土			
			±			
			土			
			土			
¹ Enter either "A" for Attracting specification, according to me	ng method ethod used,	, "S" for Sus as shown ir	sceptometer, "F" for F n Table B.3(b) in R 11	Fluxgate probe or "Sp" for ma 1-1	terial	
Passed	Failed	the	accuracy class that w	as specified by the manufactu	rer	
Remarks:						
					•••••	•••••
						•••••
						•••••

DENSITY DETERMINATION – Method A (10, B.7.1, B.7.2, B.7.4)

Application no.:	 	Environmental condition			
Type designation:	 	Air temperature		°C	
Date:	 	Liquid temperature		°C	
Starting time:	Ending time:				

Refer to Table 5 in R 111-1 for maximum and minimum limits for density

Test method A1 (two different reference weights weighed in air) (R111-1 B.7.4.2)

Calculation according to equation (B.7.4-2) in R 111-1.

$$\rho_{\rm t} = \frac{\rho_{\rm l} (C_{\rm a} m_{\rm ra} + \Delta m_{\rm wa}) - \rho_{\rm a} (C_{\rm al} m_{\rm rl} + \Delta m_{\rm wl})}{C_{\rm a} m_{\rm ra} + \Delta m_{\rm wa} - C_{\rm al} m_{\rm rl} - \Delta m_{\rm wl}}$$

with:
$$C_{\rm a} = 1 - \frac{\rho_{\rm a}}{\rho_{\rm ra}}$$
, $C_{\rm al} = 1 - \frac{\rho_{\rm al}}{\rho_{\rm rl}}$, $\Delta m_{\rm wa} = (I_{\rm ta} - I_{\rm ra})C_{\rm s}$, $\Delta m_{\rm wl} = (I_{\rm tl} - I_{\rm rl})C_{\rm s}$, and $C_{\rm s} = 1 - \frac{\rho_{\rm as}}{\rho_{\rm s}}$

Calculation according to equation (B.7.4-16) in R 111-1.

In most cases, the buoyancy correction factors C_a , C_{al} and C_s do not differ significantly from each other and may be set to unity, thereby simplifying equation (B.7.4-2) as follows:

$$\rho_{\rm t} = \frac{\rho_{\rm l} \big(m_{\rm ra} + \Delta m_{\rm wa}\big) - \rho_{\rm a} \big(m_{\rm rl} + \Delta m_{\rm wl}\big)}{m_{\rm ra} + \Delta m_{\rm wa} - m_{\rm rl} - \Delta m_{\rm wl}}$$

Method A2 (reference weights weighed in air and in the liquid) (R111-1 B.7.4.3)

Calculation according to equation (B.7.4-22) or (B.7.4-31) in R 111-1.

When the same reference standard is used for air and liquid measurement, $m_{\rm ra} = m_{\rm rl} = m_{\rm r}$ and $\rho_{\rm ra} = \rho_{\rm rl} = \rho_{\rm r}$, then use equation (B.7.4-22):

$$\rho_{\rm t} = \frac{\rho_{\rm l} \left(C_{\rm a} m_{\rm r} + \Delta m_{\rm wa}\right) - \rho_{\rm a} \left(C_{\rm l} m_{\rm r} + \Delta m_{\rm wl}\right)}{m_{\rm r} \frac{\rho_{\rm l} - \rho_{\rm a}}{\rho_{\rm r}} + \Delta m_{\rm wa} - \Delta m_{\rm wl}}$$

When different reference standards are used for air and liquid measurement, $m_{\rm ra} \neq m_{\rm rl}$ and $\rho_{\rm ra} \neq \rho_{\rm rl}$, then use equation (B.7.4-31):

$$\rho_{\rm t} = \frac{\rho_{\rm l} \left(C_{\rm a} m_{\rm ra} + \Delta m_{\rm wa} \right) - \rho_{\rm a} \left(C_{\rm l} m_{\rm rl} + \Delta m_{\rm wl} \right)}{C_{\rm a} m_{\rm ra} + \Delta m_{\rm wa} - C_{\rm l} m_{\rm rl} - \Delta m_{\rm wl}}$$

Density determination – Method A (continued)

		Obse	rved			Calculate	ed			
Weight	$ ho_{\!\scriptscriptstyle a}$ kg m $^{\!\scriptscriptstyle -3}$	$ ho_1$ kg m ⁻³	I_{ta}	$I_{ m tl}$	$\Delta m_{\rm wa}$	$\Delta m_{ m wl}$	ρ _t kg m ⁻³	Estimated uncertainty	Pass	Fail
10 kg										
5 kg										
2 kg										
2 kg										
1 kg										
500 g										
200 g										
200 g										
100 g										
50 g										
20 g										
20 g										
10 g										
5 g										

Passed	Failed	the accuracy	class that was specified	by the manufacturer	
Remarks:					

DENSITY VERIFICATION – Method B (10, B.7.1, B.7.2, B.7.5)

Applicat	ion no.:					Environmental co	onditions	
Type desig	gnation:					Air temperature		°C
	Date:					Liquid temperature		°C
Startii	ng time:				Ending time:			
					aximum and minimum on $(B.7.5-1)$ (mandato			
				_	$\frac{\rho_{1}m_{t}}{-I_{tl}\left(1-\frac{\rho_{a}}{\rho_{ref}}\right)}$	-y 101 Cidoo 2-j).		
Weight	_	Obse			Calculated	Estimated	Pass	Fail
weight	$I_{ m tl}$	m_{t}	$ ho_1$ kg m ⁻³	$ ho_{a}$ kg m ⁻³	$oldsymbol{ ho_{ m t}}{ m kg~m}^{-3}$	uncertainty	rass	ran
Passed		Failed	the	e accuracy	class that was specific	ed by the manufacturer		
Remarks:								
	•••••		•••••	•••••			••••••	

LIMIT DENSITY VALUES Density determination – Method B

	Clas	ss E ₁	Clas	ss E ₂	Clas	ss F ₁
Weight	Lowest acceptable I _{tl(min)}	Highest acceptable $I_{tl(max)}$	Lowest acceptable $I_{tl(min)}$	Highest acceptable $I_{tl(max)}$	Lowest acceptable I _{tl(min)}	Highest acceptable $I_{tl(max)}$
50 kg	43.738	43.801	43.638	43.910	43.277	44.274
20 kg	17.495	17.520	17.455	17.564	17.311	17.709
10 kg	8.7476	8.7602	8.7277	8.7819	8.6555	8.8547
5 kg	4.3738	4.3801	4.3638	4.3910	4.3277	4.4274
2 kg	1.7495	1.7520	1.7455	1.7564	1.7311	1.7709
1 kg	0.87476	0.87602	0.87277	0.87819	0.86555	0.88547
500 g	437.41	437.98	436.42	439.07	432.81	442.71
200 g	174.98	175.17	174.59	175.61	173.15	177.07
100 g	87.50	87.58	87.30	87.80	86.58	88.53
50 g	43.741	43.797	43.596	43.948	43.184	44.365
20 g	17.472	17.545	17.358	17.660	17.000	18.017
10 g	8.720	8.788	8.638	8.872	8.352	9.166
5 g	4.3506	4.4041	4.283	4.478	4.069	4.688
2 g	1.7280	1.7742	1.671	1.833	1.51	2.00
1 g	0.8568	0.8954	0.814	0.937	0.67	1.00

Shaded areas: Method B2 not recommended

DENSITY DETERMINATION – Method C (10, B.7.1, B.7.2, B.7.6)

Applicat	ion no.:					Environmental c	onditions	
Type desig	gnation:					Air temperature		°C
	Date:					Liquid temperature		°C
Startir	ng time:				Ending time: aximum and minimur equation (B.7.6-1) or			
		Cur			B.6 to determine ρ_1	(2.7.0 2).		
		Obse	erved		Calculated			
Weight	m_{t}	$I_{ m dl}$	ρ _a kg m ⁻³	$ ho_1$ $ m kg m^{-3}$	$ ho_{ m t}$ kg m ⁻³	Estimated uncertainty	Pass	Fail
Passed		Failed	the	e accuracy	class that was specifi	ed by the manufacturer		
Remarks:								

DENSITY DETERMINATION – Method D (10, B.7.1, B.7.2, B.7.7)

Application	n no.:						Environmental cond	litions	
Type designa	ation:						Air temperature		°C
	Date:					Liqu	id temperature		°C
Starting		er to Table			maximum	Ending time: and minimum limitequation (B.7.7-1).	ts for density.		_
			Observe	·d					
Weight	m _t	$ ho_1$ $ m kg m^{-3}$	I_{l+t}	I_1	ρ _a kg m ⁻³	Calculated $ ho_{ m t}$ kg m ⁻³	Estimated uncertainty	Pass	Fail
Passed		Failed	t	he accurac	cy class th	nat was specified by	the manufacturer		
Remarks:									
								•••••	

DENSITY DETERMINATION – Method E (10, B.7.1, B.7.2, B.7.8)

Т	ype d		tion:: Date:								_						7.8-1) to (B.7.8-3) s for cylindrical v			
Weight		ı	1	N	Aeas u	red v	alues			1			(Calcula	ted		Calculated ρ_a	Estimated uncertainty	Pass	Fai
	Н	R ₁	R ₂	R ₃	\mathbf{D}_1	D ₂	\mathbf{D}_3	l_1	l_2	<i>l</i> ₃	m_0	$V_{\rm A}$	$V_{\rm B}$	$V_{\rm C}$	V_{D}	$V_{ m weight}$	ρ _a kg m ⁻³		1 433	
Passed Lemarks:		I	Failed	d	the	accur	acy c	lass th	nat was	s spec	cified l	by the	I manufa	cturer		1		<u> </u>		

DENSITY DETERMINATION – Method F (10, B.7.1, B.7.2, B.7.9)

Application no	0.:				
Type designation	n:				
Dar	te:				
		······		_	
Starting tim	ne:		Ending time:		
	Refer to Table	5 in R 111-1 for m	naximum and minimum limits for density.	_	
Method use	ed: F1 (R)	111-1 B.7.9.2)	F2 (R 111-1 B.7.9.3)		
Weight	Alloy	ρ _t kg m ⁻³	Estimated uncertainty	Pass	Fail
		Kg III	uncertainty		
Passed	Failed	the accuracy cla	ss that was specified by the manufacturer		
Remarks:					
				•••••	

COMPARISON OF THE TEST WEIGHT USING ONE REFERENCE WEIGHT AND CYCLE ABBA (C.4.1)

Application no).:							At start	At end	7
ype designation						A	ir temperature:			°C
Date	e:					Rela	ative humidity:			%
							Air density:			$\frac{1}{\text{kg m}^{-3}}$
							Time:			hh:mm
							L			_
	Appl	icable (yes/no):			(Conventional ma	ass of the referen	ce weight (m_{cr}) :		
		Period:		seconds		De	ensity of the refe	rence mass $(\rho_{\rm r})$:		kg m ⁻³
		$I_{\rm r1}$	I_{t1}	I_{t2}	$I_{\rm r2}$	ΔI_i	$ ho_{\!\scriptscriptstyle{ m a}i}$	C_i	$\Delta m_{\mathrm{c}i}$	
	units						kg m ⁻³			
	1									
	2									
	3									
	4									
	5									
	6									
	7									
	8									
	9									
	10									
n =								$\min(\Delta m_{ci}) =$		
								$\max(\Delta m_{ci}) =$		
								$\overline{\Delta m_{\rm c}} =$		
								$m_{\rm ct} =$		

COMPARISON OF THE TEST WEIGHT USING ONE REFERENCE WEIGHT AND CYCLE ABA (C.4.1)

Application no).:							At start	At end	
pe designation	n:					A	ir temperature:			°C
Date	e:					Rel	ative humidity:			%
							Air density:			kg m ⁻³
							Time:			hh:mm
				_			L			
	Appli	icable (yes/no):								
V	alue of the refere	ence mass (m_{cr}) :				D	ensity of the refero	ence mass $(\rho_{\rm r})$:		kg m ⁻³
Г		$I_{\rm r1}$	$I_{\rm t1}$	$I_{\rm r2}$	ΔI_i	$ ho_{\!\scriptscriptstyle{ m a}i}$	C_i	$\Delta m_{\mathrm{c}i}$		
	units					kg m ⁻³				
	1									
	2									
	3									
	4									
	5									
	6									
	7									
	8									
	9									
	10									
n =							$\min(\Delta m_{ci}) =$			
							$\max(\Delta m_{ci}) =$			
							$\overline{\Delta m_{\rm c}} =$			
							$m_{\rm et} =$			

COMPARISON OF THE TEST WEIGHT USING ONE REFERENCE WEIGHT AND CYCLE $AB_1...B_nA$ (C.4.2)

Application no	o.:							At start	At end	
Type designatio					•••••	Ai	r temperature:			°C
Dat	te:					Rela	tive humidity:			%
							Air density:			kg m ⁻³
							Time:			hh:mm
	Арр	blicable (yes/no)	:							
V	Value of the refer	rence mass (m_{cr})	:							
D	Density of the reference	erence mass $(ho_{\scriptscriptstyle m I})$:	kg m ⁻³						
		$I_{\rm r1}$	$I_{t(1)}$	$I_{\mathrm{t(2)}}$	$I_{t(3)}$	$I_{t(4)}$	$I_{t(5)}$	$I_{\rm r2}$	$ ho_{\mathrm{a}i}$	C_i
	units								kg m ⁻³	
-	1									
_	2									
_	3									
	4									
	5									
	6									
	7									
	8									
	9									
	10									

Note: $J \le 5$

n =

COMPARISON OF THE TEST WEIGHT USING ONE REFERENCE WEIGHT AND CYCLE $AB_1...B_nA$ (C.4.2), continued

	$\Delta I_{(1)}$	$\Delta I_{(2)}$	$\Delta I_{(3)}$	$\Delta I_{(4)}$	$\Delta I_{(5)}$	$\Delta m_{\mathrm{c}(1)}$	$\Delta m_{\mathrm{c}(2)}$	$\Delta m_{c(3)}$	$\Delta m_{\mathrm{c}(4)}$	$\Delta m_{\mathrm{c}(5)}$
units										
i										
1										
2										
5										
6										
7										
8										
9										
10										
				n	$\min(\Delta m_{c(j)}) =$					
				ma	$ax(\Delta m_{c(j)}) =$					
					$\overline{\Delta m_{\mathrm{c}(j)}} =$					
					$m_{\rm ct} =$					

Remarks:		

STANDARD UNCERTAINTY OF THE WEIGHING PROCESS, u_w , TYPE A (C.6.1)

Quantity	Value	Unit
$s(\Delta m_{ci})$		mg
n		_
$u_{\rm w}(\overline{\Delta m_{\rm c}}) = \frac{s(\Delta m_{\rm ci})}{\sqrt{s}} =$		

Equation (*C.6.1-1*):

$u_{\rm w}\left(\overline{\Delta m_{\rm c}}\right) = \frac{s(\Delta m_{\rm ci})}{\sqrt{n}} =$	

For classes F_2 , M_1 , M_2 and M_3 (C.6.1.1)

Quantity	Value	Unit
$\max(\Delta m_{ci})$		mg
$\min(\Delta m_{ci})$		mg
$\max(\Delta m_{oi}) - \min(\Delta m_{oi})$		

Equation (*C.6.1-2*):

$s(\Delta m_{\rm c}) = \frac{\max(\Delta m_{\rm ci}) - \min(\Delta m_{\rm ci})}{2 \times \sqrt{3}} =$	mg

For classes E_1 , E_2 and F_1 (C.6.1.2)

	Quantity	Value	Unit
	n		_
	$\Delta m_{ m c1}$		mg
	$\Delta m_{ m c2}$		mg
	$\Delta m_{ m c3}$		mg
	$\Delta m_{ m c4}$		mg
	$\Delta m_{ m c5}$		mg
Note: Use these empty rows			
for additional Δm_{ci}			
·			

Equation *(C.6.1-3)*:

$s^{2}(\Delta m_{c}) = \frac{1}{n-1} \sum_{i=1}^{n} \left(\Delta m_{ci} - \overline{\Delta m_{c}} \right)^{2}$	mg ²

STANDARD UNCERTAINTY OF THE WEIGHING PROCESS, u_w , TYPE A (C.6.1), continued

For J series of measurements (C.6.1.4)

	Quantity	Value	Unit
	J		_
	s_1		mg
	s_2		mg
	<i>s</i> ₃		mg
	s_4		mg
	<i>s</i> ₅		mg
Note: Use these empty			
rows for additional s_j			
Equation (C.6.1-4):	$s^{2}(\Delta m_{c}) = \frac{1}{J} \sum_{i=1}^{J} s_{j}^{2}(\Delta m_{ci}) =$		mg ²

UNCERTAINTY OF THE REFERENCE WEIGHT, $u(m_{cr})$, TYPE B (C.6.2)

Standard uncertainty	of the known reference weight		
	0	V 7-1	TI*4
	Quantity U	Value	Unit
	k		_
	$u_{\text{inst}}(m_{\text{cr}})$		mg
Equation (C.6.2-1):	$u(m_{\rm cr}) = \sqrt{\left(\frac{U}{k}\right)^2 + u_{\rm inst}^2(m_{\rm cr})} =$		mg
Standard uncertainty	of the unknown reference weight, for F_1 , F_2 , M_1 , M_2 , M_3	weights (C.6.2.1)	
	Quantity	Value	Unit
	<i>бт</i>		mg
	$u_{\rm inst}(m_{\rm cr})$		mg
Equation (<i>C.6.2-2</i>):	$u(m_{\rm cr}) = \sqrt{\frac{\delta m^2}{3} + u_{\rm inst}^2(m_{\rm cr})} =$		mg
If a combination of re	eference weights is used (C.6.2.2)		
	Quantity	Value	Unit
	$u(m_{\rm cr}_1)$		
	$u(m_{\text{cr }2})$		
	$u(m_{cr3})$		
	<i>u</i> (<i>m</i> _{cr} ₄)		
	$u(m_{\text{cr 5}})$		
Note: Use these empty rows for additional $u(m_{cr})$			
Equation (<i>C.6.2-3</i>):	$u(m_{\rm cr}) = \Sigma_i \ u(m_{\rm cr} \ _i) =$		

STANDARD UNCERTAINTY OF THE AIR BUOYANCY CORRECTIONS, u_b , TYPE B (C.6.3)

$$u_{b}^{2} = \left[m_{cr}\frac{(\rho_{r}-\rho_{t})}{\rho_{r}\rho_{t}}u(\rho_{a})\right]^{2} + \left[m_{cr}(\rho_{a}-\rho_{0})\right]^{2}\frac{u^{2}(\rho_{t})}{\rho_{t}^{4}} + m_{cr}^{2}(\rho_{a}-\rho_{0})\left[(\rho_{a}-\rho_{0})-2(\rho_{al}-\rho_{0})\right]\frac{u^{2}(\rho_{r})}{\rho_{r}^{4}}$$
 (C.6.3-1)

Quantity	Value	Unit
$m_{ m cr}$		
$ ho_{ m r}$		
$\rho_{\rm t}$		
$ ho_{ m a}$		
$ ho_{ m al}$		
ρ_0		
$u(ho_{ m a})$		
$u(\rho_l)$		
$u(\rho_a)$ $u(\rho_t)$ $u(\rho_r)$		

First term (A):

$\left[m_{\rm cr}\frac{\left(\rho_{\rm r}-\rho_{\rm t}\right)}{\rho_{\rm r}\rho_{\rm t}}u(\rho_{\rm a})\right]$]2
---	----

Second term (B):

 $\left[m_{\rm cr}(\rho_{\rm a}-\rho_0)\right]^2\frac{u^2(\rho_{\rm t})}{\rho_{\rm t}^4}$

Third term (C):

$m_{\rm cr}^2(\rho_{\rm a}-\rho_0)[(\rho_{\rm a}-\rho_0)-2(\rho_{\rm al}-\rho_0)]^{\underline{u}}$	$\frac{2(\rho_{\rm r})}{\rho_{\rm r}^4}$
--	--

Equation *(C.6.3-1)*:

$$u_b^2 = A + B + C =$$

STANDARD UNCERTAINTY OF THE AIR BUOYANCY CORRECTION, u_b , Type B (C.6.3), continued

	The uncertainty due to air buoyancy is negligible (usually the case for classes M ₁ , M ₂ and	d M ₃) (C.6.3.2)
Air	r density (C.6.3.4):	
	Air density not measured, average value for site used. Estimated uncertainty as follows:	
	$u(\rho_{\rm a}) = \frac{0.12}{\sqrt{3}} = 0.069\ 282\ 032\ \text{kg m}^{-3}$	(C.6.3-2)
	Data supporting lower value of uncertainty provided $u(\rho_a)=$	kg m ⁻³

Variance of air density (C.6.3.6):

At relative humidity of hr = 0.5 (50 %), a temperature of 20 °C and a pressure of 101 325 Pa, the following numerical values apply approximately:

 $u_{\rm F}$ = [uncertainty of the formula used] (for CIPM formula: $u_{\rm F}$ = $10^{-4} \rho_a$)

$$\frac{\partial \rho_{\rm a}}{\partial p} = 10^{-5} \, \mathrm{Pa}^{-1} \, \rho_{\rm a}$$

$$\frac{\partial \rho_{\rm a}}{\partial t} = -3.4 \times 10^{-3} \,\mathrm{K}^{-1} \,\rho_{\rm a}$$

$$\frac{\partial \rho_{\rm a}}{\partial hr} = -10^{-2} \, \rho_{\rm a}$$

where hr = relative humidity, as a fraction.

Values used:

Quantity	Value	Unit
$u_{ m F}$		
$\frac{\partial ho_{ m a}}{\partial p}$		
u_p		
$\frac{\partial \rho_{\mathrm{a}}}{\partial t}$		
u_t		
$\frac{\partial ho_{ m a}}{\partial hr}$		
u_{hr}		

Equation (C.6.3-3): $u^{2}(\rho_{a}) = u_{F}^{2} + \left(\frac{\partial \rho_{a}}{\partial p}u_{p}\right)^{2} + \left(\frac{\partial \rho_{a}}{\partial t}u_{t}\right)^{2} + \left(\frac{\partial \rho_{a}}{\partial hr}u_{hr}\right)^{2} =$

STANDARD UNCERTAINTY OF THE BALANCE, $u_{\rm ba}$, TYPE B (C.6.4)

Standard uncertainty due to the sensitivity of the balance, u_s , Type B (C.6.4.2)

	Quantity	Value	Unit
	$\overline{\Delta m_{ m c}}$		
	$u(m_{\rm s})$		
	m_{s}		
	$u(\Delta I_{\mathrm{s}})$		
	$\Delta I_{ m s}$		
Equation (C.6.4-1):	$u_{\rm s}^2 = \left(\overline{\Delta m_{\rm c}}\right)^2 \left(\frac{u^2(m_{\rm s})}{m_{\rm s}^2} + \frac{u^2(\Delta I_{\rm s})}{\Delta I_{\rm s}^2}\right) =$		
andard uncertainty d	lue to the display resolution of a digital balance, $u_{ m d}$, $^{\prime}$	Гуре В (С.6.4.3)	
	Quantity	Value	Unit
	d		
Equation (C.6.4-2):	$u_{\rm d} = \left(\frac{d/2}{\sqrt{3}}\right) \times \sqrt{2} =$		
	lue to eccentric loading, $u_{\rm E}$, Type B (C.6.4.4)		
	lue to eccentric loading, u_E , Type B (C.6.4.4) automatic exchange mechanism (C.6.4.4.1)		
		Value	Unit
	automatic exchange mechanism (C.6.4.4.1)	Value	Unit
	automatic exchange mechanism (C.6.4.4.1) Quantity	Value	Unit
	automatic exchange mechanism (C.6.4.4.1) Quantity d_1	Value	Unit
	automatic exchange mechanism (C.6.4.4.1) Quantity d_1 d_2	Value	Unit
	automatic exchange mechanism (C.6.4.4.1) $\begin{array}{c} \textbf{Quantity} \\ d_1 \\ d_2 \\ \\ \textbf{Maximum value from test} \end{array}$	Value	Unit
	automatic exchange mechanism (C.6.4.4.1) $\begin{array}{c} & & \\$	Value	Unit
Balance without	automatic exchange mechanism (C.6.4.4.1) Quantity d_1 d_2 Maximum value from test Minimum value from test D	Value	Unit
Balance without a	automatic exchange mechanism (C.6.4.4.1) Quantity d_1 d_2 Maximum value from test Minimum value from test D	Value	Unit
Balance without a	automatic exchange mechanism (C.6.4.4.1) Quantity d_1 d_2 Maximum value from test Minimum value from test D $u_E = \frac{d_1}{d_2} \times D$ $u_E = \frac{d_1}{2 \times \sqrt{3}} = 0$	Value	Unit

Position 1, ΔI_1	
Position 2, ΔI_2	

Equation (C.6.4-4): $u_{\rm E} = \frac{\left|\Delta I_1 - \Delta I_2\right|}{2} =$

STANDARD UNCERTAINTY OF THE BALANCE, u_{ba} , TYPE B (C.6.4) (continued)

Weight satisfies the assumed to be zer	he requirements of this Recommendation. Therefore, the unco.	certainty due to mag	netism, u_{ma} , is
	Quantity	Value	Unit
	u_{ma} =		
Combined standard un	certainty of the balance, u_{ba} (C.6.4.6)		
	Quantity	Value	Unit
	$u_{\rm s}$		
	u_{d}		
	u_{E}		
	$u_{ m ma}$		
Equation (C.6.4-5):	$u_{\rm ba} = \sqrt{u_{\rm s}^2 + u_{\rm d}^2 + u_{\rm E}^2 + u_{\rm ma}^2} =$		
	EXPANDED UNCERTAINTY, $U(m_{ct})$ (C.6.5)		
		Value	Unit
	(C.6.5)	Value	Unit
	(C.6.5) Quantity	Value	Unit
	Quantity $u_{\rm w}(\overline{\Delta m_{\rm c}})$	Value	Unit
	Quantity $u_{w}(\overline{\Delta m_{c}})$ $u(m_{cr})$	Value	Unit
Equation (C.6.5-1):	Quantity $u_{\rm w} \overline{\left(\Delta m_{\rm c}\right)}$ $u(m_{\rm cr})$ $u_{\rm b}$	Value	Unit
Equation (C.6.5-1):	Quantity $u_{\rm w} \overline{\Delta m_{\rm c}}$ $u(m_{\rm cr})$ $u_{\rm b}$ $u_{\rm ba}$	Value	Unit
Equation (C.6.5-1):	Quantity $u_{\rm w} \overline{\Delta m_{\rm c}}$ $u(m_{\rm cr})$ $u_{\rm b}$ $u_{\rm ba}$	Value	Unit
Equation (C.6.5-1):	Quantity $u_{\rm w}(\overline{\Delta m_{\rm c}})$ $u(m_{\rm cr})$ $u_{\rm b}$ $u_{\rm ba}$ $u_{\rm c}(m_{\rm ct}) = \sqrt{u_{\rm w}^2(\overline{\Delta m_{\rm c}}) + u^2(m_{\rm cr}) + u_{\rm b}^2 + u_{\rm ba}^2} =$		

Note: Use copies of pages 27 to 37 for additional test weights

 $U(m_{\rm ct}) = k u_{\rm c}(m_{\rm ct}) =$

Equation (C.6.5-3):