International Recommendation

Edition 2006 (E)

Heat meters

Part 3: Test Report Format

Compteurs d'énergie thermique

Partie 3: Format du rapport d'essai

Organisation Internationale de Métrologie Légale

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY

Contents

Intro	duc	tion	. 4
Expl	ana	tory notes to the Test Report Format	. 4
Note	cor	ncerning the numbering of the following pages	. 4
I.	ТУ	PE EVALUATION REPORT	5
	1	Information concerning the type	. 5
	2	Summary of the tests	13
	3	Performance tests	14
	4	Dry heat	24
	5	Cold	25
	6	Variations in supply voltage and frequency	26
	7	Durability test	34
	8	Damp heat cyclic	38
	9	Short time mains voltage reduction	39
	10	Electrical transients	41
	11	Electromagnetic field	44
	12	Electrostatic discharge	47
	13	Static magnetic field	48
	14	Electromagnetic field at mains frequency	50
	15	Internal pressure	51
	16	Pressure loss	52
II.	IN	ITIAL VERIFICATION REPORT	53
	1	Information concerning the EUT verified	53
	2	Initial verification tests	60

Foreword

The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization whose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States. The main categories of OIML publications are:

- International Recommendations (OIML R), which are model regulations that establish the metrological characteristics required of certain measuring instruments and which specify methods and equipment for checking their conformity. OIML Member States shall implement these Recommendations to the greatest possible extent;
- International Documents (OIML D), which are informative in nature and which are intended to harmonize and improve work in the field of legal metrology;
- International Guides (OIML G), which are also informative in nature and which are intended to give guidelines for the application of certain requirements to legal metrology; and
- International Basic Publications (OIML B), which define the operating rules of the various OIML structures and systems.

OIML Draft Recommendations, Documents and Guides are developed by Technical Committees or Subcommittees which comprise representatives from the Member States. Certain international and regional institutions also participate on a consultation basis. Cooperative agreements have been established between the OIML and certain institutions, such as ISO and the IEC, with the objective of avoiding contradictory requirements. Consequently, manufacturers and users of measuring instruments, test laboratories, etc. may simultaneously apply OIML publications and those of other institutions.

International Recommendations, Documents, Guides and Basic Publications are published in English (E) and translated into French (F) and are subject to periodic revision.

Additionally, the OIML publishes or participates in the publication of **Vocabularies (OIML V)** and periodically commissions legal metrology experts to write **Expert Reports (OIML E)**. Expert Reports are intended to provide information and advice, and are written solely from the viewpoint of their author, without the involvement of a Technical Committee or Subcommittee, nor that of the CIML. Thus, they do not necessarily represent the views of the OIML.

This publication - reference OIML R 75-3, Edition 2006 - was developed by Technical Committee TC 11 *Instruments for measuring temperature and associated quantities.*

It was approved for final publication by the International Committee of Legal Metrology in 2006.

OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional information on OIML Publications may be obtained from the Organization's headquarters:

Bureau International de Métrologie Légale11, rue Turgot - 75009 Paris - FranceTelephone:33 (0)1 48 78 12 82Fax:33 (0)1 42 82 17 27E-mail:biml@oiml.orgInternet:www.oiml.org

OIML R 75: Heat meters Part 3: Test Report Format

Introduction

Heat meters and sub-assemblies which comply with the general requirements of OIML R 75-1 and which are submitted for type approval and for initial verification shall comply with the relevant tests specified in R 75-2.

Implementation of this Test Report Format is informative with regard to the implementation of R 75-1 and R 75-2 in national regulations; however, its implementation for the Type Evaluation Report is mandatory within the framework of the OIML Certificate System for Measuring Instruments.

Note: For terms and definitions, refer to R 75-1.

Explanatory notes to the Test Report Format

Section I includes the required format of a Type Evaluation Report and Section II includes a recommended format of an Initial Verification Report for a complete heat meter, a calculator, a flow sensor, a temperature sensor pair or a combined sub-assembly.

The symbols used in the tables are:

MPE	<u>Maximum Permissible Error</u>
EUT	<u>Equipment Under Test</u>
RVM	<u>R</u> eference <u>Values</u> for the <u>Measurand</u> (5.3 in R 75-2)
n/a	<u>n</u> ot <u>applicable</u>

The summary tables of tests and the tables for each test shall be completed according to this example:

Pass ×	Fail	When the EUT passes the test		
Pass Fail ×		When the EUT fails the test		
Pass n/a Pass n/a		Not applicable		

Note concerning the numbering of the following pages

In addition to the sequential numbering at the bottom of the pages of this Publication, a special place is left at the top of each page (starting with the following page) for numbering the pages of reports established following this model. For a given report, it is advisable to complete the sequential numbering of each page by the indication of the total number of pages of the report.

I. TYPE EVALUATION REPORT

1 Information concerning the type

1.1 General information

Testing Authority

Name:		
Address:		
Accredited laboratory:	Yes No	Accreditation No.: By company:
Test No.:	Declaration of expanded	uncertainty of test equipment No.:
Contact information:		
Date of beginning and end of tests:		
Name(s) of test engineer	(s):	

Applicant/manufacturer information

Application No.:
Application date:
Model designation:
Applicant:
Address:
Manufacturer:
Address:
Representative:
(Name, telephone)

1.2 Information concerning the type

Instrument category: Complete instrument	Documentation No.: Serial No.: Year of manufacture:
Calculator	Documentation No.: Serial No.: Year of manufacture:
Flow sensor	Documentation No.: Serial No.: Year of manufacture:
Temperature sensor pair	Documentation No.: Serial No.: Year of manufacture:
Combined sub-assemblies	Documentation No.: Serial No.: Year of manufacture:

Short description of the principle of m	easurement (measuring method):
	nufacturer:
Additional qualifying information sup	plied: Yes No Remarks:
security sealing plan, initial function (requirements of sections 11 and 12 in	
Pass Fail Remarks:	
1.2.1 Complete instrument sp	ecifications
Accuracy class:	Class 1 Class 2 Class 3
Heat conveying liquid:	Water Water-glycol solution Mixing:/
Environmental class:	A B C
Type of temperature sensors: Indication if shielding:	Pt 100 Pt 500 Pt 1000 Pt 10000 other Yes No
Flow sensor to be operated:	In the flow
Limits of temperature:	$\theta_{\min} = _$ °C $\theta_{\max} = _$ °C
Limits of temperature difference:	$\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$
Display unit options:	GJ MJ kWh
Maximum value of thermal power (P_s)): MW
Output signal for testing:	Type: Level: V
Corresponding factor for test output:	Wh/pulse
Display unit options for testing:	MJ kWh Wh
Dynamic behavior (circumstances of t	emperature measurement and integration):
Other functions in addition to heat ind	ication:

For the flow sensor:

Physical dimensions (length, thread/flange specification):					
Installation conditions (e.g. straight sect	Installation conditions (e.g. straight sections of piping):				
Upstream/downstream, vertical/horizon	tal position:				
Maximum admissible working pressure	(PN-class):				
Maximum pressure loss at q_p : b Temperature sensor installed: Yes					
Filter installed: Yes	No No				
Straightener installed: Yes	No 🗌				
Range of electrical conductivity of wate	er (if necessary): μ S/cm to μ S/cm				
Length of the connection cable to the el (if the electronic part is separated from					
Response time (for fast response meters):s				
Limits of flowrate:	$q_{\rm p} = _$ m ³ /h $q_{\rm i} = _$ m ³ /h $q_{\rm s} = _$ m ³ /h				
Low flow threshold value:	m ³ /h				
Limits of temperature (heat conveying l	iquid): $\theta_{\min} = \underline{\qquad} \circ C \qquad \theta_{\max} = \underline{\qquad} \circ C$				
Nominal meter factor:	litres/pulse				
Output signal for testing:	Type: Level: V				
Corresponding factor for test output:	litres/pulse				
1.2.2 Calculator specifications Type of temperature sensors:	Pt 100 Pt 500 Pt 1000 Pt 10000				
(or declaration of sensor coefficients:	R_0 : Ω A: B:)				
Wiring of sensors:	4-wire 3-wire 2-wire				
Indication if shielding:	Yes No				
Flow sensor to be operated:	In the flow In the return				
Environmental class:	A B C				
Heat conveying liquid:	Water Water-glycol solution Mixing:/				
Limits of temperature:	$\theta_{\min} = ___ ^{\circ}C \qquad \theta_{\max} = ___ ^{\circ}C$				
Limits of temperature difference:	$\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$				

Display unit options: GJ	MJ kWh	
Maximum value of thermal power (P_s) :	MW	
RMS value of temperature sensor current:	mA	
Required input signal from the flow sensor:		
Nominal meter factor:	litres/pulse (or corresponding factor for test input)	
Input signal for testing, type:	level:V	
Maximum frequency of flow sensor signal:	For testing: Hz In normal use: Hz	
Output signal for testing:	Type: level: V	
Corresponding factor for test output:	Wh/pulse	
Display unit options for testing:	MJ kWh Wh	
Dynamic behavior (circumstances of temper	rature measurement and integration):	
Other functions in addition to heat indication	n:	
1.2.3 Flow sensor specifications		
Accuracy class: Class 1 Class	uss 2 Class 3 C	
Environmental class: A		
Heat conveying liquid: Water	Water-glycol solution Mixing:/	
Physical dimensions (length, thread/flange s	pecification):	
Installation conditions (e.g. straight sections of piping):		
Upstream/downstream, vertical/horizontal p	osition:	
Maximum admissible working pressure (PN-class):		
Maximum pressure loss at q_p :	bar Pa	
Temperature sensor installed:	Yes No	
Filter installed:	Yes No	
Straightener installed:	Yes No	
-		
-	$Yes \square No \square$ $d): \theta_{min} = _ ^{\circ}C \theta_{max} = _ ^{\circ}C$	
Limits of temperature (heat conveying liquid	Yes No Yes No No \square d): $\theta_{\min} = _ ^{\circ}C \theta_{\max} = _ ^{\circ}C$ recessary): $_ \mu S/cm$ to $_ \mu S/cm$ odes	

Limits of flowrate:	<i>q</i> _p =	_ m³/h	$q_i =$	_ m³/h	$q_{\rm s}$ =	m³/h
Low flow threshold value:	m³/	h				
Nominal meter factor:	litre	es/pulse				
Corresponding factor for test output:	litre	es/pulse				
Output signal for testing, type:	leve	el:	V			

1.2.4 Temperature sensor pair specifications

Type identification:	Pt 100 Pt 500 Pt 1000 Pt 1000 Pt 10000			
(or declaration of sensor coefficients:	R_0 : Ω A: B:)			
Wiring of sensors:	4-wire 3-wire 2-wire			
Total resistance of a 2-cable wire:	$\underline{\qquad} \Omega/m \qquad Cross section of a wire: \underline{\qquad} mm^2$			
Maximum length of a cable for:	Pt 100 m, Pt 500 m, Pt 1000 m, other m			
Indication if shielding	Yes No			
Limits of temperature:	$\theta_{\min} = _$ °C $\theta_{\max} = _$ °C			
Limits of temperature difference:	$\Delta \theta_{\min} = _$ K $\Delta \theta_{\max} = _$ K			
Installation requirements (pocket more	inting): Yes No			
Physical dimensions:	Length: mm Diameter: mm			
Minimum immersion depth:	mm			
Maximum liquid velocity for sensors	over 200 mm length: m/s			
Maximum admissible working pressu	re for direct mounted sensors (PN-class):			
$\tau_{0.5}$ response time:s Identification of flow and return temperature sensors (if needed): At the flow At the return				
Maximum RMS value of sensor curre	ent: mA			
1.2.5 Combined sub-assemblies specifications (calculator + temperature sensor pair)				
Type of temperature sensors:	Pt 100 Pt 500 Pt 1000 Pt 10000			
(or declaration of sensor coefficients:	R ₀ : A: B:)			
Wiring of sensors: 4-wire	3-wire 2-wire Indication if shielding: Yes No			
Environmental class: A				

Heat conveying liquid: Water	Vater-glycol solution Mixing:/
Flow sensor to be operated:	In the flow In the return
Limits of temperature:	$\theta_{\min} = \ \circ C \qquad \qquad \theta_{\max} = \ \circ C$
Limits of temperature difference:	$\Delta \theta_{\min} = \K \qquad \Delta \theta_{\max} = \K$
Installation requirements (pocket mounting)	Yes No
Physical dimensions: Length:	mm Diameter: mm
Minimum immersion depth:	mm
Maximum liquid velocity for sensors over 2	00 mm length: m/s
Maximum admissible working pressure for	direct mounted sensors (PN-class):
$\mathcal{T}_{0.5}$ response time:	S
Display unit options:	GJ MJ kWh
Maximum value of thermal power (P_s) :	MW
Output signal for testing:	Type: Level: V
Corresponding factor for test output:	Wh/pulse
Display unit options for testing:	MJ kWh Wh
Required input signal from the flow sensor:	
Input signal for testing:	Type: Level: V
Nominal meter factor:	litres/pulse (or corresponding factor for test input)
Maximum frequency of flow sensor signal:	For testing: Hz In normal use: Hz
Dynamic behavior (circumstances of temper	rature measurement and integration):
Other functions in addition to heat indication	n:
Correctness of identification of flow and ret	urn temperature sensors: Yes No

Accuracy class:	Class 1 Class 2 Class 3
Environmental class:	A B C
Type of temperature sensors:	Pt 100 Pt 500 Pt 1000 Pt 10000
Wiring of sensors:	4-wire 3-wire 2-wire Indication if shielding: Yes No
Heat conveying liquid:	Water Water-glycol solution Mixing:/
Flow sensor to be operated:	In the flow In the return
Limits of temperature:	$\theta_{\min} = _\\circ C \qquad \qquad \theta_{\max} = _\\circ C$
Limits of temperature difference:	$\Delta \theta_{\min} = _$ K $\Delta \theta_{\max} = _$ K
Display unit options (MJ, kWh):	
Maximum value of thermal power (P	s): MW
Output signal for testing:	Type: Level: V
Corresponding factor for test output:	Wh/pulse
Display unit options for testing:	MJ kWh Wh
Dynamic behavior (circumstances of	temperature measurement and integration):
Other functions in addition to heat inc	dication:
For the flow sensor: Physical dimensions (length, thread/f	lange specification):
Installation conditions (e.g. straight s	ections of piping):
Upstream/downstream, vertical/horiz	ontal position:
Maximum admissible working pressu	rre (PN-class):
Maximum pressure loss at q_p :	barPa
Temperature sensor installed:	Yes No
Filter installed:	Yes No
Straightener installed:	Yes No
Range of electrical conductivity of w	ater (if necessary): μ S/cm to μ S/cm
Length of the connection cable to the	electrodes (if the electronic part is separated from the sensor head): m
Response time (for fast response met	ers): s

Limits of flowrate:	$q_{\rm p} = $	m³/h	$q_{\rm i}$ =	m ³ /h	<i>q</i> _s =	m³/h
Low flow threshold value:	m	n³/h				
Limits of temperature (heat conveying	g liquid):	$\theta_{\min} = $	_°C	$\theta_{\rm max} =$	_°C	
Nominal meter factor:	li	tres/pulse				
Corresponding factor for test output:	li	tres/pulse				
Output signal for testing:	Type:		Level:	V		

1.3 Rated operating conditions

Complete instrument, (combined) sub-assemblies

	Environmental class			Remarks
	A	В	С	
Ambient temperature °C	+ 5 to + 55	- 25 to + 55	+ 5 to + 55	
Relative humidity %		< 93		
Mains supply voltage V		U _{nom} (+ 10 %/	Frequency used for measurement purpose:	
Mains frequency Hz	f _{nom} (± 2 %)			Yes 🗌 No 🗌
External low voltage V	AC	U _{nom} (+ 50 %/	- 50 %)	Frequency used for measurement purpose:
(< 50 V)	DC 🗌	U _{nom} (+ 75 %/	- 50 %)	Yes 🗌 No 🗌
Battery voltage V	Voltage in ser	vice under norm	al conditions	Type, lifetime

General information concerning ambient test conditions

Test No.:		 	 	
Application No.:				
Ambient temperature:				
Barometric pressure:	kPa			

2 Summary of the tests (Ref.: 6.2, Table 2 in R 75-2)

	Temperature	Flow sensor	Calculator	Complete	Combined su	b-assemblies
T (sensor pair			instrument	Calculator +	Calculator +
Test according to					temp. sensor pair	flow sensor
Subclause	Serial No.	Serial No.	Serial No.	Serial No.	Serial No.	Serial No.
6.4	Pass	Pass	Pass	Pass	Pass	Pass
	Fail	Fail	Fail	Fail	Fail	Fail
6.5		Pass	Pass	Pass	Pass	Pass
		Fail	Fail	Fail	Fail	Fail
6.6		Pass	Pass	Pass	Pass	Pass
0.0		Fail	Fail	Fail	Fail	Fail 🗌
(7		Pass	Pass 🗌	Pass 🗌	Pass 🗌	Pass
6.7		Fail	Fail	Fail	Fail	Fail
()	Pass	Pass	Pass	Pass	Pass	Pass
6.8	Fail	Fail	Fail	Fail	Fail	Fail
<u> </u>		Pass	Pass	Pass	Pass	Pass
6.9		Fail	Fail	Fail	Fail	Fail
< 10		Pass	Pass	Pass	Pass	Pass
6.10		Fail	Fail	Fail	Fail	Fail
<		Pass	Pass	Pass	Pass	Pass
6.11		Fail	Fail	Fail	Fail	Fail
(10		Pass	Pass	Pass	Pass	Pass
6.12		Fail	Fail	Fail	Fail	Fail
		Pass	Pass	Pass	Pass	Pass
6.13		Fail	Fail	Fail	Fail	Fail
		Pass	Pass	Pass	Pass	Pass
6.14		Fail	Fail	Fail	Fail	Fail
		Pass	Pass	Pass	Pass	Pass
6.15		Fail	Fail	Fail	Fail	Fail
		Pass		Pass		Pass
6.16		Fail		Fail		Fail
(17		Pass		Pass		Pass 🗌
6.17		Fail		Fail		Fail

3 Performance tests

3.1 Flow sensor

Test results: Flow sensor

<u>Table 1</u>: Performance test (Ref.: 6.4.1 in R 75-2)

Initial intrinsic error at RVM-conditions: _____%

 $K = (q_S/q_i)^{\frac{1}{4}} =$ _____ Electrical conductivity of water (if necessary): _____ μ S/cm

Test num- ber		Test point flowrate		Tempe of lic	quid	Flow sensor output signal volume	Conven- tional true volume	Error	MPE
	Cala	m ³ /h ulated	Actual	°(Level	Measured	m ³	m ³	%	%
1	q_1		Actual	$(\theta_{\min}+5)$	wiedsuieu				
	91			$(v_{\min} + s)$					
2	q_2			$(\theta_{\min}+5)$					
3	q_3			$(\theta_{\min}+5)$					
4	q_4			$(\theta_{\min}+5)$					
5	q_5			$(\theta_{\min}+5)$					
6	q_1			(50±5)					
7	q_2			(50 ± 5)					
8	q_3			(50±5)					
9	q_4			(50±5)					
10	q_5			(50 ± 5)					
11	q_1			(85 ± 5)					
12	q_2			(85±5)					
13	q_3			(85±5)					
14	q_4			(85 ± 5)					
15	q_5			(85±5)					

Markings:

3.1.1 Electromagnetic type flow sensors (Ref.: 6.4.1.2 in R 75-2)

The test results have to be noted according to Table 1. The electrical conductivity of water and the length of the connecting cable to the electrodes shall be noted in the type test report.

3.1.2 Fast response meters (Ref.: 6.4.1.3 in R 75-2)

Test results: Flow sensor

Table 2: Performance test - fast response meters (Ref.: 6.4.1.3 in R 75-2)

Initial intrinsic error at RVM-conditions: _____%

In the case of a complete instrument or combined sub-assemblies:

Temperature difference: K

Cycle No.	Test point flowrate $q_{\rm s}$ ${\rm m}^3/{\rm h}$	Temperature of liquid °C Level Measured	Flow sensor output signal volume m ³	Conventional true volume m ³	Error %	MPE %
1		θ_{\min} to $(\theta_{\min} + 5)$				
2		θ_{\min} to $(\theta_{\min} + 5)$				
3		θ_{\min} to $(\theta_{\min} + 5)$				
4		θ_{\min} to $(\theta_{\min} + 5)$				
5		θ_{\min} to $(\theta_{\min} + 5)$				
6		θ_{\min} to $(\theta_{\min} + 5)$				
7		θ_{\min} to $(\theta_{\min} + 5)$				
8		θ_{\min} to $(\theta_{\min} + 5)$				
9		θ_{\min} to $(\theta_{\min} + 5)$				
10		θ_{\min} to $(\theta_{\min} + 5)$				

Markings:

3.2 Calculator (Ref.: 6.4.2 in R 75-2)

Test results: Calculator

Table 3: Performance test (Ref.: 6.4.2 in R 75-2)

Initial intrinsic error at RVM-conditions: _____%

Simulated volume: _____ m³

Simulated flowrate: _____ m³/h

Test	Test point °C		Temperature difference $\Delta \theta$ K								
No.	0 -	$\Delta \theta_{\rm n}$	*) nin	5	*)	20)*)	$\Delta \theta_{\rm R}$	*) VM	$\Delta \theta_{\rm n}$	*) nax
	$\theta_{\text{return}} = \theta_{\min}^{*)}$	Error %	MPE %	Error %	MPE %	Error %	MPE %	Error %	MPE %	Error %	MPE %
1		/0	,,,	/0	/0	/0	/0	,,,	/0	/0	,,,
2											
3											
Test	$\theta_{\rm return} =$	$\Delta \theta_{\rm n}$	*) nin	5	*)	20)*)	$\Delta \theta_{\rm R}$	*) VM		
No.	$=\theta_{RVM}_{*)}$	Error %	MPE %	Error %	MPE %	Error %	MPE %	Error %	MPE %		
		70	70	70	70	70	70	70	70		
4											
5											
6											
Test	<i>A</i> ₋ =	20) *)	$\Delta \theta_{ m R}$	*) VM	$\Delta \theta_{n}$	*) nax				
No.	$\theta_{\text{flow}} = \theta_{\text{max}}^{*)}$	Error	MPE	Error	MPE	Error	MPE				
110.	Umax	%	%	%	%	%	%				
7											
8											
9											

*) Test points are measured values.

Errors calculated from (pulse) output signal		or	display indication	
--	--	----	--------------------	--

Markings:

3.3 Temperature sensors (Ref.: 6.4.3 in R 75-2)

Test results: Temperature sensors

Table 4: Minimum immersion depth, single sensors (Ref.: 4.16 in R 75-1 and 6.4.3.1 in R 75-2)

Temperature sensor serial No:

°C Temperature of water bath:

Maximum permissible change of the output value < 0.1 K

Immersion depth	Measured resistance	Calculated temperature *)
mm	Ω	°C
10		
15		
20		
25		
30		
35		
40		
45		
50		

*) using standard IEC 60751 constants

Note: Values of immersion depths are examples.

Minimum immersion depth specified by measurements: mm

Minimum immersion depth specified by the supplier: mm

Pass: ____ Fail: ____ Signature: _____ Markings:

Thermal response time, single sensors are not installed in pockets Table 5a: (Ref.: 4.1 in R 75-1 and 6.4.3.2 in R 75-2)

Water bath temperature: ____ °C

Thermal response time specified by the supplier: s

Temperature	Measured response 50 % time	Specified response 50 % time
sensor type,	$ au_{0.5}$	$ au_{0.5}$
serial number	S	S

Markings:

Pass: ____ Fail: ____

Signature: _____

Repeat the measurements with sensors in pockets, if the tolerated gap between the sensor and the pocket Note: is more than 0.125 mm or the immersion depth of the pocket is less than 70 mm.

Table 5b: Thermal response time, single sensors are installed in pockets (Ref.: 4.1 in R 75-1 and 6.4.3.2 in R 75-2)

Water bath temperature: °C

Thermal response time specified by the supplier: s

Measured response 50 % time	Specified response 50 % time
$ au_{0.5}$	$ au_{0.5}$
S	S
-	-

Pass: ____ Fail: ____ Signature: _____ Markings:

Calculation of constants of the temperature/resistance equation of IEC 60751. Table 6a: Sensors are tested without pockets (Ref.: 9.2.2.2 in R 75-1 and 6.4.3.3 in R 75-2, IEC 60751)

Sensor pair serial No.: Temperature range specified by the supplier from ____ °C to ____ °C Temperature difference for the pair specified by the supplier from K to K Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000 Sensors are intended to be installed in pockets: Yes No

Temp	erature C		resistance
Level *)	Measured	Sensor 1 (flow)	Sensor 2 (return)
(5 ± 5)			
(40 ± 5)			
(70 ± 5)			
(90 ± 5)			
(130 ± 5)			
(160 ± 10)			

*) The temperature sensors shall be tested at least at three temperature levels. Temperature levels shall be chosen to optimize the spread of temperature over the temperature range specified by the supplier.

Constants of sen	sor 1 calculated acc	ording to IEC 60751	l:	
R ₀ :	_Ω A:	B:		
Constants of sen	sor 2 calculated acc	ording to IEC 60751	l:	
R ₀ :	_Ω A:	B:		
Markings:	Pass:	Fail:	Signature:	

Table 6b: Calculation of constants of the temperature/resistance equation of IEC 60751. Sensors are tested in pockets (Ref.: 9.2.2.2 in R 75-1 and 6.4.3.3 in R 75-2, IEC 60751)

Test is performed if sensors are intended to be installed in pockets and if the maximum tolerated gap between the sensor and the pocket is more than 0.125 mm or the immersion depth of the pocket is less than 70 mm.

Sensor	pair: Serial No.	(flow):	Serial No.	(return):
		(110).	 	(1000000)

Temperature range specified by the supplier from <u>°C</u> to <u>°C</u>

Temperature difference for the pair specified by the supplier from K to K

Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000

	erature C		resistance
Level *)	Measured	Sensor 1 (flow)	Sensor 2 (return)
(5 ± 5)			
(40 ± 5)			
(70 ± 5)			
(90±5)			
(130 ± 5)			
(160 ± 10)			

*) The temperature sensors shall be tested at least at three temperature levels. Temperature levels shall be chosen to optimize the spread of temperature over the temperature range specified by the supplier.

Constants of sensor 1 calculated according to IEC 60751:

R₀: _____Ω A: B:

Constants of sensor 2 calculated according to IEC 60751:

R₀: _____Ω A: _____ B: _____

Pass: ____ Fail: ____ Signature: ____ Markings:

19

Table 7: Performance tests. Maximum absolute error of each sensor of a temperature sensor pair. Single sensors are tested without pockets (Ref.: 9.2.2.2 in R 75-1 and 6.4.3.3 in R 75-2, IEC 60751)

Sensor pair: Serial No. (flow):	Serial No. (return):
Temperature range specified by the supplier from _	°C to°C
Temperature difference for the pair specified by the	e supplier from K to K
Type of temperature sensors: Pt 100 Pt 500) Pt 1000 Pt 10000
Sensors are intended to be installed in pockets:	Yes No

Sensor	Flow temperature °C	Return temperature °C	Maximum absolute error ^{*)} K	MPE K
Sensor 1 (flow)				± 2
Sensor 2 (return)				± 2

Markings: Fail: Pass: Signature:

*) Note: The "ideal" sensor curve (with constants of IEC 60751) shall be subtracted from the characteristic curve for the sensor (calculated constants are below Table 6a). The difference between characteristics shall be determined over the temperature range specified for the temperature sensor. The maximum difference in Ω between characteristics at measured points of the temperature range shall be calculated as a difference in K. The maximum permissible difference between characteristics (MPE) is ± 2 K.

Table 8a: Performance test. Maximum relative error of a temperature sensor pair. Sensors are tested without pockets (Ref.: 9.2.2.2 in R 75-1 and 6.4.3.3 in R 75-2)

Sensor pair: Serial No. (flow): _	Serial No. (return):
Temperature range specified by	the supplier from <u>°C</u> to <u>°C</u>
Temperature difference for the p	pair specified by the supplier fromK toK
Type of temperature sensors:	Pt 100 Pt 500 Pt 1000 Pt 10000
Sensors are intended to be instal	led in pockets: Yes No
Used temperature levels for the	test:°C and°C and°C
Constants of sensor 1 calculated	according to IEC 60751:
R_0 : Ω A:	B:
Constants of sensor 2 calculated	according to IEC 60751:
R_0 : Ω A:	B:

(Calculated constants are below Table 6a.)

Flow temperature	Return temperature	Relative error	MPE
°C	°C	%	%
22	20	0.40	3.5
73	71	- 0.59	3.5
40	20	0.06	0.8
60	20	0.03	0.65
120	20	- 0.01	0.56

Note to this Table with measurement results (all values are examples):

The Table shows examples of the relative error calculated at different temperature combinations. This example shows that the maximum relative error (- 0.59 %) is found at the temperature combination of 73 °C/71 °C.

Test result (summary)

Flow	Return	Maximum relative error *)	MPE
temperature	temperature	E_{Tmax}	
°C	°C	%	%
73	71	- 0.59	3.5

Signature: _____ Pass: ____ Fail: ____ Markings:

*) The calculation of the maximum relative error of the temperature sensor pair E_{Tmax} can be performed as on the following page (recommended method):

Calculation of the maximum relative error of the temperature sensor pair, E_{Tmax} :

1) First calculate:

$$E_{\rm T} = \frac{e_1 - e_2}{\Delta \theta} \cdot 100 \%$$

where:

- e_1, e_2 are the absolute errors of single sensors in relation to the "ideal" sensor (IEC) at one temperature within the temperature range specified by the supplier (1 for the flow sensor, 2 for the return sensor);
- $\Delta \theta$ is the temperature difference specified by the supplier ($\theta_{\text{flow}} \theta_{\text{return}}$) (it is recommended to start with $\Delta \theta_{\min}$).

The maximum values of the absolute errors of the single sensors tested without pockets are given in Table 7.

2) An auxiliary equation for the determination of E_{Tmax} is:

where:

 $x = E_{\rm T}/E_{\rm t\;MPE}$

 $E_{\rm t\,MPE} = \pm (0.5 + 3 \,\Delta\theta_{\rm min}/\Delta\theta)$

(see: OIML R 75-1, clause 9.2.2.2, maximum permissible error of the temperature sensor pair).

- 3) To obtain the maximum value of x, the calculation according to the equation in 1) above has to be repeated taking into account the whole temperature range and the whole temperature difference range specified by the supplier, separately in two ranges of return temperature θ_{return} :
 - a) for $\theta_{\text{return}} \leq 80 \text{ °C}$ in the whole range of temperature difference;
 - b) for $\theta_{\text{return}} > 80 \text{ °C}$ only for temperature differences over 10 K.
- 4) The biggest value of x calculated according to 3) above is "the worst case" x_{max}
- 5) The value of x_{max} shall be used for the calculation of the maximum value of the relative error E_{T} (E_{Tmax}):

 $E_{\text{Tmax}} = x_{\text{max}} E_{\text{tMPE}}$

The combination of values of the flow temperature θ_{flow} and the return temperature θ_{return} , for which E_{Tmax} has appeared shall be determined. E_{Tmax} shall be within the limits of the MPE, observing the range of $\Delta\theta$ (see: OIML R 75-1, clause 9.2.2.2).

Table 8b: Performance test. Maximum relative error of a temperature sensor pair. Sensors are tested in pockets (Ref.: 9.2.2.2 in R 75-1 and 6.4.3.3 in R 75-2)

This test is performed if the sensors are intended to be installed in pockets and if the maximum tolerated gap between the sensor and the pocket is more than 0.125 mm or the immersion depth of the pocket is less than 70 mm.

Sensor pair: Serial No. (flow): Serial No. (return):
Temperature range specified by the supplier from °C to °C
Temperature difference for the pair specified by the supplier from K to K
Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000
Used temperature levels for the test:°C and°C and°C
Constants of sensor 1 calculated according to IEC 60751:
R ₀ :Ω A: B:
Constants of sensor 2 calculated according to IEC 60751:
R ₀ :Ω A: B:
(Calculated constants are beneath the table 6b.)

Test result (summary)

Flow temperature	Return temperature	Maximum relative error *)	Maximum relative error deviation without/in pockets **)	MPE	1/3 MPE
°C	°C	%	%	%	%

*) Calculations as in Table 8a

**) The maximum relative error determined for the sensor pair tested in pockets shall be subtracted from the maximum relative error of the sensor pair determined for sensors tested without pockets. The maximum permissible deviation from the value determined without pockets is 1/3 MPE.

Pass: ____ Fail: ____ Signature: _____ Markings:

3.4 Combined sub-assemblies or complete instrument (Ref.: 6.4.4 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described in 3.1 for the flow sensor, 3.2 for the calculator and/or 3.3 for the temperature sensors shall be carried out.

4 Dry heat (Ref.: 6.5 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out.

Test results: Calculator

Dry heat (Ref.: 6.5.1 and 5.3 in R 75-2) <u>Table 9</u>:

Simulated flowrate (impulse signal): _____ m³/h

Test number	Test point return temperature °C	Temperature difference $\Delta \theta$ K						
1	$\theta_{\min} =$	$\frac{\Delta \theta_n}{\text{Error}}$	nin = MPE %	Δθ Error %	RVM = MPE %			
2	$\theta_{\rm RVM}$ =	$\frac{\Delta \theta_n}{\text{Error}}$ %	nin = MPE %	Δθ Error %	RVM = MPE %			
Markings:	Pass:	Fail:	Sig	nature:				

Test results: Flow sensor

Dry heat (Ref.: 6.5.2 in R 75-2 and 5.3 in R 75-2) **Table 10:**

Water temperature: _____ °C

	Test poin	t flowrate	Error	MPE	
Test number	Calculated m ³ /h	Actual m ³ /h	%	%	
1	(1 to 1.1) $q_{\rm i}$				
2 *)	$(0.7 \text{ to } 0.75) q_{\rm p}$				

*) This test shall only be carried out if $q_p > 3.5 \text{ m}^3/\text{h}$

Markings:

Pass: _____ Fail: _____

Signature:

5 Cold (Ref.: 6.6 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out.

Test results: Calculator

Cold (Ref.: 6.6.1 in R 75-2) <u>Table 11</u>:

Simulated flowrate (impulse signal): _____ m³/h

Test number	Test point return temperature °C	Temperature difference $\Delta \theta$ K				
1	$\theta_{\min} =$	$\frac{\Delta\theta_n}{\text{Error}}$ %	nin = MPE %	$\frac{\Delta \theta_{\rm F}}{\rm Error}$ %	MPE %	
2	$\theta_{\rm RVM} =$	$\frac{\Delta \theta_n}{\text{Error}}$ %	nin = MPE %	$\frac{\Delta \theta_{\rm f}}{\rm Error}$	MPE %	

Markings: Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor

Table 12: Cold (Ref.: 6.6.2 in R 75-2 and 5.3 in R 75-2)

Water temperature: ____ °C

	Test poin	t flowrate	Error	MPE	
Test number	Calculated m ³ /h	Actual m ³ /h	%	% %	
1	(1 to 1.1) $q_{\rm i}$				
2 *)	$(0.7 \text{ to } 0.75) q_{\text{p}}$				

*) This test shall only be carried out if $q_p > 3.5 \text{ m}^3/\text{h}$

Pass: ____ Fail: ____ Signature: _____ Markings:

6 Variations in supply voltage and frequency (Ref.: 6.7 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out.

Test results: Calculator. Variation in supply voltage

Table 13: Supply mode a), mains operation with a single rated voltage U_{nom} (Ref.: 6.7a and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

*f*_{nom} specified by the supplier: _____ Hz

$\theta_{\rm RVM}$	$\Delta \theta_{\rm RVM}$	Simulated flowrate	$U_{\rm max} = 1.1 \ U_{\rm nom}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.85 \ U_{\rm nom}$	Error at U_{\min}	MPE
°C	К	m³/h	V	%	V	%	%

Markings:	Pass:	Fail:	Signature:	
-----------	-------	-------	------------	--

Test results: Calculator. Variation in supply frequency

Supply mode a), mains operation with variations of frequency if mains frequency is used for **Table 14:** measuring purposes (Ref.: 6.7a and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

$\theta_{\rm RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$f_{\rm max} = 1.02 f_{\rm nom}$	Error at f_{max}	$f_{\rm min} = 0.98 f_{\rm nom}$	Error at f_{\min}	MPE
°C	Κ	m³/h	Hz	%	Hz	%	%
Markings:	Pa	ass:	Fail:	Signature:			

Test results: Flow sensor. Variation in supply voltage

Supply mode a), mains operation with a single rated voltage U_{nom} **Table 15**: (Ref.: 6.7a and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

Water temperature: _____ °C

Flowrate	$U_{\rm max} = 1.1 \ U_{\rm nom}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.85 \ U_{\rm nom}$	Error at U_{\min}	MPE
m³/h	V	%	V	%	%

Markings: Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor. Variation in supply frequency

Table 16: Supply mode a), mains operation with variations of frequency if mains frequency is used for measuring purposes (Ref.: 6.7a and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

Water temperature: _____ °C

Flowrate	$f_{\rm max} = 1.02 f_{\rm nom}$	Error at f_{\max}	$f_{\rm min} = 0.98 f_{\rm nom}$	Error at f_{\min}	MPE
m³/h	Hz	%	Hz	%	%

Pass: ____ Fail: ____ Signature: _____ Markings:

Test results: Calculator. Variation in supply voltage

Supply mode b), mains operation with a nominal range of voltage from U_{nom1} to U_{nom2} **Table 17:** (Ref.: 6.7b and 5.3 in R 75-2)

 $U_{\rm nom1}$ specified by the supplier: _____ V

 $U_{\rm nom2}$ specified by the supplier: _____ V

*f*_{nom} specified by the supplier: _____ Hz

$\theta_{\rm RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$U_{\rm max} = 1.1 \ U_{\rm nom2}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.85 \ U_{\rm nom1}$	Error at U_{\min}	MPE
°C	К	m³/h	V	%	V	%	%

Maultine av	D	F. 11.	Signatura
Markings:	Pass:	Fail:	Signature:

Test results: Calculator. Variation in supply frequency

Supply mode b), mains operation with variations of frequency if mains frequency is used for **Table 18:** measuring purposes (Ref.: 6.7b and 5.3 in R 75-2)

 $U_{\rm nom1}$ specified by the supplier: V

 $U_{\rm nom2}$ specified by the supplier: _____ V

 $U_{\text{nom,calculated}} = (U_{\text{nom}2} + U_{\text{nom}1})/2:$ _____ V

 f_{nom} specified by the supplier: _____ Hz

$ heta_{ m RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$f_{\rm max} = 1.02 f_{\rm nom}$	Error at f_{\max}	$f_{\rm min} = 0.98 f_{\rm nom}$	Error at f_{\min}	MPE
°C	K	m³/h	Hz	%	Hz	%	%

Markings:

Pass: ____ Fail: ____

Signature:

Test results: Flow sensor. Variation in supply voltage

Supply mode b), mains operation with a nominal range of voltage from U_{nom1} to U_{nom2} **Table 19:** (Ref.: 6.7b and 5.3 in R 75-2)

 $U_{\rm nom1}$ specified by the supplier: _____ V

 $U_{\rm nom2}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

Water temperature: _____ °C

Flowrate	$U_{\rm max} = 1.1 \ U_{\rm nom2}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.85 \ U_{\rm nom1}$	Error at U_{\min}	MPE
m³/h	V	%	V	%	%

Markings: Pass: _____ Fail: _____ Signature:

Test results: Flow sensor. Variation in supply frequency

Supply mode b), mains operation with variations of frequency if mains frequency is used for **Table 20:** measuring purposes (Ref.: 6.7b and 5.3 in R 75-2)

 U_{nom1} specified by the supplier: _____ V

 $U_{\rm nom2}$ specified by the supplier: _____ V

 $U_{\text{nom,calculated}} = (U_{\text{nom2}} + U_{\text{nom1}})/2:$ _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

Water temperature: °C

Flowrate	$f_{\rm max} = 1.02 f_{\rm nom}$	Error at f_{\max}	$f_{\rm min} = 0.98 f_{\rm nom}$	Error at f_{\min}	MPE
m³/h	Hz	%	Hz	%	%
Markings:	Pass:	Fail:	Signature:		

29

Test results: Calculator. Variation in supply voltage

Supply mode c), external AC low voltage operation with a single rated voltage **Table 21:** (Ref.: 6.7c and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

$ heta_{ m RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$U_{\rm max} = 1.5 \ U_{\rm nom}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.5 \ U_{\rm nom}$	Error at U_{\min}	MPE
°C	K	m³/h	V	%	V	%	%
Markings:	Pa	ass:	Fail:	Signature:	·		I

Test results: Calculator. Variation in supply frequency

Supply mode c), external AC low voltage operation with variations of frequency if AC **Table 22:** frequency is used for measuring purposes (Ref.: 6.7c and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

$ heta_{ m RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$f_{\rm max} = 1.02 f_{\rm nom}$	Error at f_{\max}	$f_{\rm min} = 0.98 f_{\rm nom}$	Error at f_{\min}	MPE
°C	K	m³/h	Hz	%	Hz	%	%

Pass: ____ Fail: ____ Signature: _____ Markings:

Test results: Flow sensor. Variation in supply voltage

Supply mode c), external AC low voltage operation with a single rated voltage **Table 23:** (Ref: 6.7c and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 $f_{\rm nom}$ specified by the supplier: _____ Hz

Water temperature: °C

Flowrate	$U_{\rm max} = 1.5 \ U_{\rm nom}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.5 \ U_{\rm nom}$	Error at U_{\min}	MPE
m³/h	V	%	V	%	%

Markings: Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor. Variation in supply frequency

Table 24: Supply mode c), external AC low voltage operation with variations of frequency if AC frequency is used for measuring purposes (Ref.: 6.7c and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

 f_{nom} specified by the supplier: _____ Hz

Water temperature: °C

Flowrate	$f_{\rm max} = 1.02 f_{\rm nom}$	Error at f_{\max}	$f_{\rm min} = 0.98 f_{\rm nom}$	Error at f_{\min}	MPE
m³/h	Hz	%	Hz	%	%
Markings:	Pass:	Fail:	Signature:		·

Test results: Calculator. Variation in DC supply voltage

Supply mode d), external DC low voltage operation with a single rated voltage **Table 25**: (Ref.: 6.7d and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

$\theta_{\rm RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$U_{\rm max} = 1.75 \ U_{\rm nom}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.5 \ U_{\rm nom}$	Error at U_{\min}	MPE
°C	K	m³/h	V	%	V	%	%

Markings:

Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor. Variation in DC supply voltage

Table 26: Supply mode d), external DC low voltage operation and having a single rated voltage (Ref.: 6.7d and 5.3 in R 75-2)

 $U_{\rm nom}$ specified by the supplier: _____ V

Water temperature: _____ °C

Flowrate	$U_{\rm max} = 1.75 \ U_{\rm nom}$	Error at $U_{\rm max}$	$U_{\rm min} = 0.5 \ U_{\rm nom}$	Error at U_{\min}	MPE
m³/h	V	%	Hz	%	%

Pass: ____ Fail: ____ Signature: _____ Markings:

Test results: Calculator. Variation in battery supply voltage

Table 27: Supply mode e), operation with batteries (Ref.: 6.7e and 5.3 in R 75-2)

 $U_{\rm max}$ specified by the supplier: _____ V

 U_{\min} specified by the supplier: _____ V

$\theta_{ m RVM}$	$\Delta heta_{ m RVM}$	Simulated flowrate	$U_{ m max}$	Error at $U_{\rm max}$	U_{\min}	Error at U_{\min}	MPE
°C	K	m³/h	V	%	V	%	%

Markings:

Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor. Variation in battery supply voltage

Table 28: Supply mode e), operation with batteries (Ref.: 6.7e and 5.3 in R 75-2)

 $U_{\rm max}$ specified by the supplier: _____ V

 U_{\min} specified by the supplier: _____ V

Water temperature: _____ °C

Flowrate	U_{\max}	Error at $U_{\rm max}$	U_{\min}	Error at U_{\min}	MPE
m³/h	V	%	Hz	%	%

Pass: ____ Fail: ____ Signature: _____ Markings:

7 Durability test (Ref.: 6.8 in R 75-2)

According to 6.8.3 in R 75-2 in the case of combined sub-assemblies or complete instruments the Note: relevant tests for each sub-assembly shall be carried out. One exception is the insulation resistance for temperature sensors when they are not a part of the heat meter or the sub-assemblies.

Test results: Flow sensor

Table 29: Performance test after basic test (Ref.: 6.8.1 in R 75-2)

 $K = (q_S/q_i)^{\frac{1}{4}} =$ _____

Initial intrinsic error at RVM-conditions: _____%

Test number	Test point flowrate m ³ /h		Temperature of liquid	Flow sensor output signal	Conven tional true volume	Error of indication	MPE	
		Calculated	Actual	°C	volume m ³	m ³	%	%
1	q_1							
2	q_2							
3	q_3							
4	q_4							
5	q_5							

Markings: Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor

<u>Table 30</u>: Performance test after additional test for long life sensors (Ref.: 6.8.1 in R 75-2)

 $K = (q_{\rm S}/q_{\rm i})^{1/4} =$

Initial intrinsic error at RVM-conditions: _____%

Test number	Test point flowrate m ³ /h		Temperature of liquid	Flow sensor output signal	Conven tional true volume	Error of indication	MPE	
		Calculated	Actual	°C	volume m ³	m ³	%	%
1	q_1							
2	q_2							
3	q_3							
4	q_4							
5	q_5							

Markings:

Test results: Temperature sensor pair

Table 31a: Durability test. Sensor constants before and after test (Ref: 6.8.2 in R 75-2)

Sensor 1: Serial No. (flow):	Sensor 2: Serial No. (return):					
Temperature range specified by the supplier from <u>°C</u> to <u>°C</u>						
Temperature difference for the pair specified by the supplier fromK toK						
Type of temperature sensors: Pt 100 Pt	500 Pt 1000 Pt 10000					
Upper temperature of test: °C Low	er temperature of test:°C					

Immersion depth: ____ mm

Measurements									
Test	Before test			After test (10 cycles)					
	Senso	r 1 (flow)	Sensor 2 (return)		Senso	Sensor 1 (flow)		Sensor 2 (return)	
temperature	Temp.	R _{measured}	Temp.	R _{measured}	Temp.	R _{measured}	Temp	o. R _{measured}	
	°C	Ω	°C	Ω	°C	Ω	°C	Ω	
θ_1									
θ_2									
θ_3									
			•				-	·	
Calculation of constants according to IEC 60751									
			Befor	re test ^{*)}	After test (10 cycles)				
IEC 60751		Sensor 1	Sensor 2	Senso	r 1 Sense	or 2	Unit		
R ₀							Ω		
А							°C ⁻¹		
В							°C ⁻²		

^{*)} Calculated constants are below Table 6a.

Sensors are tested without pockets.

Markings: Pass: ____ Fail: ____ Signature: _____
Table 31b: Change of resistance corresponding to temperature (Ref: 6.8.2 in R 75-2, durability error)

Sensor 1: Serial No. (flow):	Sensor 2: Serial No. (return):
Temperature range specified by the supplier fro	m <u>°</u> C to <u>°</u> C
Temperature difference for the pair specified by	the supplier from K to K
Type of temperature sensors: Pt 100 Pt	500 Pt 1000 Pt 10000

Temperature sensors	Measured point of temperature range	Maximum change of resistance corresponding to temperature ^{*)} K	MPE
	°C		Κ
Sensor 1 (flow)			±0.1
Sensor 2 (return)			±0.1

*) The characteristic curve for the sensor before the test shall be subtracted from the characteristic curve for the sensor after the test. The difference between the characteristics before and after the test shall be determined over the temperature range specified for the temperature sensor. The maximum difference in Ω between the characteristics at the measured points of the temperature range shall be calculated as a difference in K. The maximum permissible difference between the characteristics is ± 0.1 K.

Pass: ____ Fail: ____ Signature: _____ Markings:

Test results: Temperature sensors

Table 32: Insulation resistance after durability test (Ref.: 6.8.2 in R 75-2)

Temperature sensor, serial number	Insulation resistance at reference temperature MΩ	Requirement: insulation resistance ΜΩ	Insulation resistance at maximum temperature MΩ	Requirement: insulation resistance MΩ
	at positive polarity:	≥ 100	at positive polarity:	≥ 10
	at negative polarity:	≥ 100	at negative polarity:	≥ 10
	at positive polarity:	≥ 100	at positive polarity:	≥ 10
	at negative polarity:	≥ 100	at negative polarity:	≥ 10

Markings:

Pass: ____ Fail: ____ Signature: _____

8 Damp heat cyclic (Ref.: 6.9 in R 75-2)

Note:

In case of combined sub-assemblies or complete instrument the relevant tests as described for the calculator and flow sensor shall be carried out.

Test results: Calculator

Damp heat cyclic. Comparison: Initial intrinsic error, phase 1 and phase 2 **Table 33**: (Ref.: 6.9 and 5.3 in R 75-2)

Lower temperature:	°C
Upper temperature:	°C
Relative humidity:	%
Simulated flowrate:	m ³ /h
$\theta_{\rm RVM}$:	°C
$\Delta heta_{ m RVM}$:	K

Initial intrinsic error	Intrinsic error after phase 1	Intrinsic error after phase 2	MPE
%	°⁄0	°⁄0	0⁄0

Pass: ____ Fail: ____ Signature: _____ Markings:

Note: After phase 1 means during the second cycle, phase 2 means after recovery.

Test results: Flow sensor

Damp heat cyclic. Comparison: Initial intrinsic error, phase 1 and phase 2 **Table 34**: (Ref.: 6.9 and 5.3 in R 75-2)

Lower temperature:	°C
Upper temperature:	°C
Relative humidity:	%
Flowrate:	m³/h
Water temperature in flow sensor:	°C

Initial intrinsic error %	Intrinsic error after phase 1 %	Intrinsic error after phase 2 %	MPE %
Markings: Pa	ss: Fail:	Signature:	

Note: After phase 1 means during the second cycle, phase 2 means after recovery.

<u> Table 35</u> :	Damp heat cyclic. Comparison: Initial intrinsic error, phase 1 and phase 2
	(Ref.: 6.9 and 5.3 in R 75-2)

Lower temperature:	°C
Upper temperature:	°C
Relative humidity:	%
Flowrate:	m³/h
Water temperature in flow sensor:	°C
$\theta_{\rm RVM}$:	°C
$\Delta heta_{ m RVM}$:	K

Initial intrinsic error	Intrinsic error after phase 1	Intrinsic error after phase 2	MPE
%	°⁄0	°⁄0	%

Note: After phase 1 means during the second cycle, phase 2 means after recovery.

Pass: ____ Fail: ____ Signature: _____ Markings:

9 Short time mains voltage reduction (Ref.: 6.10 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out.

Test results: Calculator

Short time mains voltage reduction. Comparison: Initial intrinsic error, after short time Table 36: mains voltage reduction (Ref.: 6.10 and 5.3 in R 75-2)

Simulated flowrate: _____ m³/h

____°C $\theta_{\rm RVM}$:

_____K $\Delta \theta_{\rm RVM}$:

Initial in	trinsic error	Intrinsic erro	or after test	MPE
	%	%)	0⁄0
Markings:	Pass:	Fail:	Signature:	

Test results: Flow sensor

Short time mains voltage reduction. Comparison: Initial intrinsic error, **Table 37:** after short time voltage reduction (Ref: 6.10 and 5.3 in R 75-2)

_____ m³/h Flowrate:

Water temperature in flow sensor: _____°C

Initial intrinsic error	Intrinsic error after test	MPE
%	%	%

Markings: Pass: ____ Fail: ____ Signature: _____

Test results: Complete instrument

Short time mains voltage reduction. Comparison: Initial intrinsic error, **Table 38:** after short time mains voltage reduction (Ref.: 6.10 and 5.3 in R 75-2)

Flowrate: m³/h °C Water temperature in flow sensor: _____°C $\theta_{\rm RVM}$:

____K $\Delta \theta_{\rm RVM}$:

Initial intrinsic error	Intrinsic error after test	MPE
%	%	%

Pass: ____ Fail: ____ Signature: _____ Markings:

10 Electrical transients (Ref.: 6.11 in R 75-2)

Note: The electrical transient disturbance tests shall be carried out on fast transients <u>and</u> surge transients. In the case of combined sub-assemblies or complete instruments the relevant tests as described for the calculator and flow sensor shall be carried out. If the sub-assemblies or the combined sub-assemblies or complete instrument under test have a standardized data output(s), determination of intrinsic error before <u>and</u> after the test shall also be made using this data output(s).

Test results: Calculator

Table 39:Transients, coupled into DC lines. Comparison: Initial intrinsic error, change of display/readings and error after test (Ref.: 6.11.1/6.11.2 and 5.3 in R 75-2)					
Kind of transients: Fast transients (b	oursts) Surge transients				
Simulated flowrate: m ³ /h					
<i>θ</i> _{RVM:} °C					
$\Delta \theta_{\rm RVM}$:K					
Display information/readings have c	hanged due to the exposure:				
Yes No Figure:					
Initial intrinsic error	Intrinsic error after test	MPE			
%	%	%			
Markings: Pass:	Fail: Signature:				
Test results: Flow sensor					
Table 40:Transients coupled into DC lines. Comparison: Initial intrinsic error, change of display/readings and error after test (Ref.: 6.11.1/6.11.2 and 5.3 in R 75-2)					
Kind of transients: Fast transients (b	oursts) Surge transients				
Flowrate:	m³/h				
Water temperature in flow sensor:°C					
Display information/readings have changed due to the exposure:					
Yes No Figure:					
Initial intrinsic error	Intrinsic error after test	MPE			
%	%	%			
Markings: Pass:	Fail: Signature:				

Transients coupled into DC lines. Comparison: Initial intrinsic error, change of display/readings and error after test (Ref.: 6.11.1/6.11.2 and 5.3 in R 75-2) <u>Table 41</u>:

Kind of transients: Fast transients (bursts) Surge transients				
Flowrate:	m ³ /h			
Water temperature in flow sensor:	°C			
$\theta_{\rm RVM}$:	°C			
$\Delta heta_{ m RVM}$:	K			
Display information/readings have ch	nanged due to the exposure:			
Yes No Figure:	_			
Initial intrinsic error	Intrinsic error after test	MPE		
%	%	%		
Test results: Calculator <u>Table 42</u> : Transients coupled into AC power lines. Comparison: Initial intrinsic error, change of display/readings and error after test (Ref.: 6.11.1/6.11.2 and 5.3 in R 75-2)				
Table 42: Transients coupled int				
Table 42: Transients coupled int	error after test (Ref.: 6.11.1/6.11.2 a			
<u>Table 42</u> : Transients coupled int display/readings and e	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients			
Table 42: Transients coupled int display/readings and e Kind of transients: Fast transients (b	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients			
Table 42: Transients coupled integration of display/readings and end of transients: Kind of transients: Fast transients (b Simulated flowrate: m ³ /	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients			
Table 42: Transients coupled infidisplay/readings and end of transients: Kind of transients: Fast transients (b Simulated flowrate: $m^3/$ $\theta_{RVM:}$ \sim C	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients h			
Table 42: Transients coupled information of transients: Kind of transients: Fast transients (b Simulated flowrate: $m^3/$ θ_{RVM} : m^2 °C $\Delta \theta_{RVM}$: K	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients hanged due to the exposure:			
Table 42: Transients coupled intendisplay/readings and end of transients: Kind of transients: Fast transients (b Simulated flowrate: $m^3/$ θ_{RVM} : m^2 $\Delta \theta_{\text{RVM}}$: K Display information/readings have character	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients hanged due to the exposure:			
Table 42: Transients coupled information of transients: Kind of transients: Fast transients (b Simulated flowrate: $m^3/$ θ_{RVM} : °C $\Delta \theta_{RVM}$: K Display information/readings have ch Yes No Figure:	error after test (Ref.: 6.11.1/6.11.2 and ursts) Surge transients	nd 5.3 in R 75-2)		

Pass: ____ Fail: ____ Signature: _____ Markings:

Test results: Flow sensor				
<u>Table 43</u> :	Transients coupled int display/readings and e			nitial intrinsic error, change of and 5.3 in R 75-2)
Kind of trans	sients: Fast transients (b	ursts)	Surge transients	
Flowrate:		m ³ /h		
Water tempe	rature in flow sensor:	°C		
Display info	rmation/readings have ch	anged due to the	he exposure:	
Yes No Figure:				
Initia	l intrinsic error	Intrinsi	c error after test	MPE
	%		%	%
Markings:	Pass:	Fail:	Signature:	

Transients coupled into AC power lines. Comparison: Initial intrinsic error, change of **Table 44:** display/readings and error after test (Ref.: 6.11.1/6.11.2 and 5.3 in R 75-2)

Kind of transients: Fast transients (bursts)		Surge transients
Flowrate:	m³/h	
Water temperature in flow sensor:	°C	
$ heta_{ m RVM}$:	°C	
$\Delta heta_{ m RVM}$:	K	

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial in	trinsic error	Intrinsi	e error after test	MPE
	%		%	%
Markings:	Pass:	Fail:	Signature:	

11 Electromagnetic field (Ref.: 6.12 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out. If the sub-assemblies or the combined sub-assemblies or complete instrument under test have a standardized data output(s), the intrinsic error determination and determination of the intrinsic error after the test shall also be made using this data output(s). The responses within three requests have to be carried out according to the protocol in accordance with IEC 60870-5-1 or IEC 61107, see note to 6.12 in R 75-2.

Test results: Calculator

Table 45:Electromagnetic field (Ref.: 6.12 and 5.3 in R 75-2)

Test level: V/m Antenna polarization: Horiz	zontal Vertical			
Dwell time: s				
Determination of intrinsic e	error: By display 🗌 B	By standardized data output		
Protocol of standardized da	ta output:			
Simulated flowrate:	m³/h			
$\theta_{\rm RVM}$:	C			
$\Delta heta_{ m RVM}$:	K			
Carrier frequencies	Transmitting	Intrinsic error at test level	MPE	
MHz	antenna	%	%	
26	biconical			
40	biconical			
60	biconical			
80	biconical			
100	biconical			
120	biconical			
144	biconical			
150	biconical			
160	biconical			
180	biconical			
200	biconical			
250	log-periodic			
350	log-periodic			
400	log-periodic			
435	log-periodic			
500	log-periodic			
600	log-periodic			
700	log-periodic			
800	log-periodic			
934	log-periodic			
1000 log-periodic				

Markings:

Pass: _____ Fail: _____

Signature: ____

Test results: Flow sensor

Table 46:Electromagnetic field (Ref.: 6.12 and 5.3 in R 75-2)
Test level: V/m
Antenna polarization: Horizontal Vertical
Dwell time:s
Determination of intrinsic error: By display By standardized data output
Protocol of standardized data output:
Test with water flow: Yes No
Flowrate: m ³ /h
Water temperature in flow sensor:°C

Carrier frequencies MHz	Transmitting antenna	Intrinsic error at test level %	MPE %
26	biconical	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,
40	biconical		
60	biconical		
80	biconical		
100	biconical		
120	biconical		
144	biconical		
150	biconical		
160	biconical		
180	biconical		
200	biconical		
250	log-periodic		
350	log-periodic		
400	log-periodic		
435	log-periodic		
500	log-periodic		
600	log-periodic		
700	log-periodic		
800	log-periodic		
934	log-periodic		
1000	log-periodic		

Markings: Pass: ____ Fail: ____ Signature: _____

Table 47: Electromagnetic field (Ref: 6.12 and 5.3 in R 75-2)

Test level: V/m Antenna polarization: Horizontal	Vertical	
Dwell time:s		
Determination of intrinsic error: By	display 🗌	By standardized data output
Protocol of standardized data output:		
Test with water flow: Yes	No 🗌	
Flowrate:	m³/h	
Water temperature in flow sensor:	°C	
$\theta_{\rm RVM}$:	°C	
$\Delta heta_{ m RVM}$:	K	

Carrier frequencies MHz	Transmitting antenna	Intrinsic error at test level %	MPE %
26	biconical		
40	biconical		
60	biconical		
80	biconical		
100	biconical		
120	biconical		
144	biconical		
150	biconical		
160	biconical		
180	biconical		
200	biconical		
250	log-periodic		
350	log-periodic		
400	log-periodic		
435	log-periodic		
500	log-periodic		
600	log-periodic		
700	log-periodic		
800	log-periodic		
934	log-periodic		
1000	log-periodic		

Markings:

Pass: ____ Fail: ____ Signature: _____

12 Electrostatic discharge (Ref.: 6.13 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out. If the sub-assemblies or the combined sub-assemblies or complete instrument under test have a standardized data output(s), the intrinsic error determination and determination of intrinsic error after the test shall also be made using this data output(s).

Test results: Calculator

<u> Table 48</u> :	Electrostatic discharge. Comparison: Initial intrinsic error, change of display/readings and
	error after test (Ref.: 6.13 and 5.3 in R 75-2)

m³/h Simulated flowrate:

°C $\theta_{\rm RVM}$:

K $\Delta \theta_{\rm RVM}$:

Display information/readings have changed due to the exposure:

No Yes Figure:

Initial in	trinsic error	Intrinsic	error after test	MPE
%		%		%
Markings:	Pass:	Fail:	Signature:	

Test results: Flow sensor

Electrostatic discharge. Comparison: Initial intrinsic error, change of display/readings and Table 49: error after test (Ref: 6.13 and 5.3 in R 75-2)

_____m³/h Flowrate:

Water temperature	in	flow	sensor:	(°C

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial intrinsic error		Intrinsic error after test		MPE
%		%		%
Markings:	Pass:	Fail:	Signature:	

<u> Table 50</u> :	Electrostatic discharge. Comparison: Initial intrinsic error, change of display/readings and
	error after test (Ref.: 6.13 and 5.3 in R 75-2)

Flowrate:	m ³ /h
Water temperature in flow sensor:	°C
$ heta_{ m RVM}$:	°C
$\Delta heta_{ m RVM}$:	K

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial intrinsic error	Intrinsic error after test	MPE
%	%	%
Markings: Pass:	Fail: Signature:	

13 Static magnetic field (Fraud protection, Ref.: 6.14 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out.

Test results: Calculator

Static magnetic field. Comparison: Initial intrinsic error, change of display information and **Table 51**: error during test (Ref.: 6.14 and 5.3 in R 75-2)

Simulated flowrate: _____ m³/h

°C $\theta_{\rm RVM}$:

K $\Delta \theta_{\rm RVM}$:

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial intrinsic error		Intrinsic error after test		MPE
%		%		%
Markings:	Pass:	Fail:	Signature:	

Test results: Flow sensor

Static magnetic field. Comparison: Initial intrinsic error, change of display information and **Table 52**: error during test (Ref.: 6.14 and 5.3 in R 75-2)

Flowrate: _____ m³/h

Water temperature in flow sensor: _____ °C

Display information/readings have changed due to the exposure:

Yes No Figure:

Initial in	trinsic error	ror Intrinsic error after		MPE
%		%		%
Markings:	Pass:	Fail:	Signature:	

Test results: Complete instrument

Static magnetic field. Comparison: Initial intrinsic error, change of display information and **Table 53:** error during test (Ref.: 6.14 and 5.3 in R 75-2)

Flowrate: _____ m³/h

°C Water temperature in flow sensor:

____°C $\theta_{\rm RVM}$:

 $\Delta \theta_{\rm RVM}$:

Display information/readings have changed due to the exposure:

Yes No Figure:

<u>%</u> % %	Initial intrinsic error	Intrinsic error after test	MPE
	%	%	%

Markings:

Pass: ____ Fail: ____ Signature: _____

____K

14 Electromagnetic field at mains frequency (Ref.: 6.15 in R 75-2)

In the case of combined sub-assemblies or complete instruments the relevant tests as described for the Note: calculator and flow sensor shall be carried out.

Test results: Calculator

Electromagnetic field at mains frequency. Comparison: Initial intrinsic error, change of Table 54: display information and error after test (Ref.: 6.15 and 5.3 in R 75-2)

Simulated flowrate: _____ m³/h

____°C $\theta_{\rm RVM}$

Κ $\Delta \theta_{\rm RVM}$:

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial intrinsic error	Intrinsic error after test	MPE
%	%	0⁄0

Markings:

Pass: ____ Fail: ____ Signature: _____

Test results: Flow sensor

Electromagnetic field at mains frequency. Comparison: Initial intrinsic error, change of Table 55: display information and error after test(Ref.: 6.15 and 5.3 in R 75-2)

Flowrate: m³/h

Water temperature in flow sensor: °C

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial intrinsic error		Intrinsic error after test		MPE
%		%		%
Markings:	Pass:	Fail:	Signature:	

<u> Table 56</u> :	Electromagnetic field at mains frequency. Comparison: Initial intrinsic error, change of
	display information and error after test (Ref.: 6.15 and 5.3 in R 75-2)

Flowrate:	m ³ /h
Water temperature in flow sensor:	°C
$\theta_{\rm RVM}$:	°C
$\Delta \theta_{\rm RVM}$:	K

Display information/readings have changed due to the exposure:

Yes No Figure: _____

Initial intrinsic error		Intrinsic error after test		MPE
0/	ó	9/	ý 0	%
Markings:	Pass:	Fail:	Signature:	

15 Internal pressure (Ref.: 6.16 in R 75-2)

Note: In the case of combined sub-assemblies or complete instruments the relevant tests as described for the calculator and flow sensor shall be carried out.

Test results: Flow sensor

Internal pressure. Comparison: Initial intrinsic error before and intrinsic error after internal **Table 57:** pressure test at RVM conditions (Ref.: 6.16 in R 75-2)

Flowrate: m³/h

°C Water temperature in flow sensor:

Initial intrinsic error		Intrinsic error after test		MPE
C	V0		%	%
Markings:	Pass:	Fail:	Signature:	

<u>Table 58</u> :	Internal pressure. Comparison: Initial intrinsic error after internal pressure test
	(Ref.: 6.16 in R 75-2)

Flowrate:	m ³ /h
Water temperature in flow sensor:	°C
$\theta_{\rm RVM}$:	°C
$\Delta heta_{ m RVM}$:	K

Initial intrinsic error	Intrinsic error after test	MPE
%	%	%

Markings: Pass: ____ Fail: ____ Signature: _____

16 Pressure loss (Ref.: 6.17 in R 75-2)

Test results: Flow sensor. Complete instrument

<u>Table 59</u>: Pressure loss (Ref.: 6.17 in R 75-2 and 6.7 in R 49-2)

I	Flowrate set to	Temperature set	Pressure loss		Requirement: M	ax. pressure loss
	$(0.9 \text{ to } 1.0) q_{\text{p}} = \frac{m^3}{h}$	to (50 ± 5) °C °C	bar	Ра	bar	Ра
					0.25 *)	2.5×10^{4} *)

*) Except where the flow sensor/heat meter includes a flow controller or also acts as a pressure-reducing device.

Markings: Pass: ____ Fail: ____ Signature:

INITIAL VERIFICATION REPORT (CERTIFICATE) Π

1 Information concerning the EUT verified

1.1 General information

Testing authority

Name:
Address:
Accredited laboratory: Yes No
Accreditation No.: by Company:
Test No.:
Declaration of expanded uncertainty of test equipment No.:
Contact information:
Date of beginning and end of tests:
Name(s) of test engineer(s):
Applicant/manufacturer information
Application No.:
Application date:
Model designation:
Applicant:
Address:
Manufacturer:
Address:
Representative (name, telephone):

1.2 Information concerning the EUT

Instrument category:
Complete instrument Documentation No.: Serial No.: Year of manufacture:
Calculator Documentation No.: Serial No.: Year of manufacture:
Flow sensor Documentation No.: Serial No.: Year of manufacture:
Temperature sensor pair Documentation No.: Serial No.: Year of manufacture:
Combined Sub-Assemblies Documentation No.: Serial No.: Year of manufacture:
Type approval number of the EUT:

	uring method):
All values in this table are taken from documentation pa	ges
	No Remarks:

Completeness and correctness of instruction manual, marking, assembly instruction, installation instruction, security sealing plan, initial functionality check and operation instruction submitted for verification (requirements of sections 11 and 12 in R 75-1 and 8.2 in R 75-2): Pass 🗌 Fail 🗌 Remarks:

.....

1.2.1 Complete instrument specifications

Accuracy class:	Class 1	Class 2 Class 3
Heat conveying liquid:	Water	Water-glycol solution Mixing:/
Environmental class:	A	В С
Type of temperature sensors:	Pt 100	Pt 500 Pt 1000 Pt 10000 other
Indication if shielding:	Yes	No
Flow sensor to be operated:	In the flow	In the return
Limits of temperature:		$\theta_{\min} = \underline{\qquad} \circ C \qquad \theta_{\max} = \underline{\qquad} \circ C$
Limits of temperature difference	ce:	$\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$
Display unit options:		GJ MJ kWh
Maximum value of thermal por	wer (P_s) :	MW
Output signal for testing:		Type: Level: V
Corresponding factor for test o	utput:	Wh/pulse
Display unit options for testing:		MJ kWh Wh
Dynamic behavior (circumstan	ces of temp	perature measurement and integration):
Other functions in addition to h	neat indicati	ion:

For the flow sensor:

Physical dimensions (length, thread/flange specification):
Installation conditions (e.g. straight sections of piping):
Upstream/downstream, vertical/horizontal position:
Maximum admissible working pressure (PN-class):
Maximum pressure loss at q_p : bar Pa
Temperature sensor installed: Yes No

Filter installed:	Yes No
Straightener installed:	Yes No
Range of electrical conductivi	ty of water (if necessary): μ S/cm to μ S/cm
Length of the connection cable separated from the sensor head	e to the electrodes (if the electronic part is d): m
Response time (for fast respon	ise meters):s
Limits of flowrate: q	$q_{\rm p} = _ m^3/h$ $q_{\rm i} = _ m^3/h$ $q_{\rm s} = _ m^3/h$
Low flow threshold value:	m³/h
Limits of temperature (heat co	enveying liquid): $\theta_{\min} = \underline{\qquad} \circ C \qquad \theta_{\max} = \underline{\qquad} \circ C$
Nominal meter factor:	litres/pulse
Output signal for testing:	Type: Level: V
Corresponding factor for test of	output: litres/pulse
1.2.2 Calculator specification	
	Pt 100 Pt 500 Pt 1000 Pt 1000 other
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Wiring of sensors: 4	-wire 3-wire 2-wire
Indication if shielding:	Yes No
Flow sensor to be operated:	In the flow In the return
Environmental class:	
Heat conveying liquid:	Water Water-glycol solution Mixing:/
Limits of temperature:	$\theta_{\min} = \underline{\qquad} \circ C \qquad \theta_{\max} = \underline{\qquad} \circ C$
Limits of temperature differen	ce: $\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$
Display unit options:	GJ MJ kWh
Maximum value of thermal po	ower (P_s) : MW
RMS value of temperature ser	isor current: mA
Required input signal from the	e flow sensor:
Nominal meter factor: lit	tres/pulse (or corresponding factor for test input)
Input signal for testing:	Type: Level: V
Maximum frequency of flow s	sensor signal: For testing: Hz In normal use: Hz
Output signal for testing:	Type: Level: V
Corresponding factor for test of	output: Wh/pulse
Display unit options for testing	g: MJ kWh Wh
Dynamic behavior (circumstan	nces of temperature measurement and integration):
Other functions in addition to	heat indication:

1.2.3 Flow sensor specifications

Accuracy class: Class 1	Class 2	Class 3		
Heat conveying liquid:	Water	Water-glycol s	olution	Mixing:/
Environmental class:	A	ВССС		
Physical dimensions (length, th	read/flange	specification):		
Installation conditions (e.g. stra	hight section	s of piping):		
Upstream/downstream, vertical	/horizontal p	oosition:		
Maximum admissible working	pressure (PN	J-class):		
Maximum pressure loss at q_p :	bar _	Pa		
Temperature sensor installed:	Yes	No 🗌		
Filter installed:	Yes	No 🗌		
Straightener installed:	Yes	No		
Limits of temperature (heat cor	nveying liqui	d): $\theta_{\min} = $	$^{\circ}C$ $\theta_{max} = $	°C
Range of electrical conductivity	y of water (i	f necessary): µ	S/cm to	μS/cm
Length of the connection cable separated from the sensor head			nic part is	
Response time (for fast response	se meters):	S		
Limits of flowrate:	Ç	$y_p = \ m^3/h$	$q_i = \underline{\qquad} n$	$h^{3/h}$ $q_{s} = \ m^{3/h}$
Low flow threshold value:	-	m³/h		
Nominal meter factor:	-	litres/pulse		
Corresponding factor for test of	utput:	litres/pulse		
Output signal for testing:	- -	Гуре:	Level:	V

1.2.4 Temperature sensor pair specifications
Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000 other
(or declaration of sensor coefficients: R_0 : Ω A: B:)
Wiring of sensors: 4-wire 3-wire 2-wire
Total resistance of a 2-cable wire: Ω/m Cross section of a wire: mm^2
Maximum length of a cable for: Pt 100 m, Pt 500 m, Pt 1000 m, other m
Indication if shielding: Yes No
Limits of temperature: $\theta_{\min} = \underline{\qquad} ^{\circ}C \qquad \theta_{\max} = \underline{\qquad} ^{\circ}C$
Limits of temperature difference: $\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$
Installation requirements (pocket mounting): Yes No
Physical dimensions: Length: mm Diameter: mm
Minimum immersion depth: mm
Maximum liquid velocity for sensors over 200 mm length: m/s
Maximum admissible working pressure for direct mounted sensors (PN-class):
$\tau_{0.5}$ response time: s
Identification of flow and return temperature sensors (if needed): At the flow At the return
Maximum RMS value of sensor current: mA
1.2.5 Combined sub-assemblies specifications (calculator + temperature sensor pair)
Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000 other
(or declaration of sensor coefficients: R_0 : Ω A: B:)
Wiring of sensors: 4-wire 3-wire 2-wire
Indication if shielding: Yes No
Environmental class: A B C
Heat conveying liquid: Water Water-glycol solution Mixing:/
Flow sensor to be operated: In the flow In the return
Limits of temperature: $\theta_{\min} = \underline{\qquad} ^{\circ}C \qquad \theta_{\max} = \underline{\qquad} ^{\circ}C$
Limits of temperature difference: $\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$
Installation requirements (pocket mounting): Yes No
Physical dimensions: Length:mm Diameter:mm
Minimum immersion depth: mm
Maximum liquid velocity for sensors over 200 mm length: m/s
Maximum admissible working pressure for direct mounted sensors (PN-class):
$\tau_{0.5}$ response time: s

Maximum value of thermal power (P_s) : MW
Output signal for testing: Type: Level: V
Corresponding factor for test output: Wh/pulse
Display unit options for testing: MJ kWh Wh
Required input signal from the flow sensor:
Input signal for testing: Type: Level: V
Nominal meter factor: litres/pulse (or corresponding factor for test input)
Maximum frequency of flow sensor signal: For testing: Hz In normal use:Hz
Dynamic behavior (circumstances of temperature measurement and integration):
Other functions in addition to heat indication:
Correctness of identification of flow and return temperature sensors: Yes No

1.2.6 Combined sub-assemblies specifications (calculator + flow sensor)

Accuracy class:	Class 1 Class 2 Class 3
Heat conveying liquid:	Water Water-glycol solution Mixing:/
Environmental class:	A B C
Type of temperature sensors:	Pt 100 Pt 500 Pt 1000 Pt 10000
Wiring of sensors:	4-wire 3-wire 2-wire
Indication if shielding:	Yes No
Flow sensor to be operated:	In the flow In the return
Limits of temperature:	$\theta_{\min} = _\ ^{\circ}C \qquad \qquad \theta_{\max} = _\ ^{\circ}C$
Limits of temperature difference	ce: $\Delta \theta_{\min} = \underline{\qquad} K \qquad \Delta \theta_{\max} = \underline{\qquad} K$
Display unit options (MJ, kWh):
Maximum value of thermal po	wer (P_s) :MW
Output signal for testing:	Type: Level: V
Corresponding factor for test o	utput: Wh/pulse
Display unit options for testing	$: MJ \square kWh \square Wh \square$
Dynamic behavior (circumstan	ces of temperature measurement and integration):
Other functions in addition to l	neat indication:

For the flow sensor:

Physical dimensions (length, thread/flange specification):
Installation conditions (e.g. straight sections of piping):
Upstream/downstream, vertical/horizontal position:
Maximum admissible working pressure (PN-class):
Maximum pressure loss at q_p : bar Pa
Temperature sensor installed: Yes No
Filter installed: Yes No
Straightener installed: Yes No
Range of electrical conductivity of water (if necessary): μ S/cm to μ S/cm
Length of the connection cable to the electrodes (if the electronic part is separated from the sensor head): m
Response time (for fast response meters):s
Limits of flowrate: $q_p = \underline{\qquad} m^3/h$ $q_i = \underline{\qquad} m^3/h$ $q_s = \underline{\qquad} m^3/h$
Low flow threshold value: m ³ /h
Limits of temperature (heat conveying liquid): $\theta_{\min} = \underline{\qquad} \circ C \qquad \theta_{\max} = \underline{\qquad} \circ C$
Nominal meter factor: litres/pulse
Corresponding factor for test output: litres/pulse
Output signal for testing: Type: Level: V

1.3 Rated operating conditions

Complete instrument, (combined) sub-assemblies

	En	vironmental clas	55	Remarks		
	A	В	С			
Ambient temperature °C	+ 5 to + 55	- 25 to + 55	+ 5 to + 55			
Relative humidity %		< 93				
Mains supply voltage V Mains frequency Hz		$U_{\rm nom} (\pm 10\%)$ $f_{\rm nom} (\pm 2\%)$	Frequency used for measurement purpose: Yes No			
External low voltage V (< 50 V)	AC DC		Frequency used for measurement purpose: Yes No			
Battery voltage V	Voltage in ser	vice under norm	al conditions	Type, lifetime		

General information concerning ambient test conditions

Test No.:		 	
Application No.:		 	
11			
Ambient temperature:	°C		
Barometric pressure:	kPa		

2 Initial verification tests (Ref.: 7 in R 75-2)

2.1 Summary of the verification tests

According to 7.5 in R 75-2 the flow sensor, the temperature sensor pair and Note for combined instruments: the calculator shall be tested separately, in accordance with 7.1 to 7.3 in R 75-2.

			Combined su		
Temperature	Flow sensor	Calculator	Calculator +	Calculator +	Complete
sensor pair			temp. sensor	flow sensor	instrument
Serial No.	Serial No.	Serial No.	pair Serial No.	Serial No.	Serial No.
Pass	Pass	Pass	Pass	Pass	Pass
Fail	Fail	Fail	Fail	Fail	Fail

2.2 Results of verification tests

2.2.1 Flow sensor (Ref.: 7.1 in R 75-2)

Table 1: Verification test

Electrical conductivity of water (if necessary): µS/cm

Remarks (e.g. straight inlet/outlet pipes, etc.):

Test No.	Test point flow rate m ³ /h		Water temperature °C		Flow sensor output sign.	Conven- tional true volume	Error	MPE
	Calculated	Actual	Level	Measured	volume m ³	m ³	%	%
1	$q_{\rm i} \le q \le 1.1 q_{\rm i}$		(50 ± 5)					
2	$q_i \le q \le 1.1 q_i$		(50 ± 5)					
3	$q_i \le q \le 1.1 q_i$		(50 ± 5)					
4	$0.1 q_{\rm p} \le q \le 0.11 q_{\rm p}$		(50 ± 5)					
5	$0.1 q_{\rm p} \le q \le 0.11 q_{\rm p}$		(50 ± 5)					
6	$0.1 q_{\rm p} \le q \le 0.11 q_{\rm p}$		(50 ± 5)					
7	$0.9 \ q_{\rm p} \le q \le 1.0 q_{\rm p}$		(50 ± 5)					
8	$0.9 \ q_{\rm p} \le q \le 1.0 q_{\rm p}$		(50 ± 5)					
9	$0.9 \ q_{\rm p} \le q \le 1.0 q_{\rm p}$		(50 ± 5)					

Note: The verification may be carried out with cold water in accordance with the procedure laid down in the type approval certificate.

Markings:

Pass: ____ Fail: ____ Signature: _____

2.2.2 Temperature sensor pair (Ref.: 7.2 in R 75-2)

Verification test, temperature sensor pair, calculations of constants for each of the Table 2a: temperature sensors, resistance equation of IEC 60751

Sensor pair serial No.: Temperature range specified by the supplier from °C to °C Temperature difference for the pair specified by the supplier from ____ K to ____ K Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000

Test point	Ear ()	Test temperature range °C		Measured resistance Ω		
No.	For θ_{\min}	Level *)	Measured	Sensor 1 (flow)	Sensor 2 (return)	
1	< 20 °C	θ_{\min} to $(\theta_{\min} + 10)$				
1	≥20 °C	35 to 45				
2	all θ_{\min}	75 to 85				
3	all θ_{\min}	$(\theta_{\rm max} - 30)$ to $\theta_{\rm max}$				

Sensors are tested without pockets in the same temperature bath.

*) If specified in the type approval certificate, variations in the temperature ranges and the number of temperature points are permissible. The immersion depth of the temperature sensors shall not be less than their minimum immersion depth. The immersion depth of short temperature sensors should not be less than the total length plus 50 % of the thread respectively the mounting (recommended).

Constants of sensor 1 calculated according to IEC 60751:

R₀: _____Ω A: _____ B: _____

Constants of sensor 2 calculated according to IEC 60751:

R₀: _____Ω A: _____ B: _____

Pass: _____ Fail: _____ Signature: _____ Markings:

Verification test, temperature sensor pair, maximum absolute error of each single Table 2b: temperature sensor of a pair

Sensor pair serial No.:
Temperature range specified by the supplier from $\{\circ}C$ to $\{\circ}C$
Temperature difference for the pair specified by the supplier from K to K
Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000
Sensors are intended to be installed in pockets: Yes No

Sensor	Flow	Return	*)	
	temperature	temperature	error	17
	<u> </u>	Ĵ	K	K
Sensor 1 (flow)				± 2
Sensor 2 (return)				± 2

*) The "ideal" sensor curve (with constants of IEC 60751) shall be subtracted from the characteristic curve for the sensor (calculated constants are given below Table 2a). The difference between the characteristics shall be determined over the temperature range specified for the temperature sensor. The maximum difference in Ω between the characteristics at the measured points of the temperature range shall be calculated as a difference in K. The maximum permissible difference between the characteristics (MPE) is ± 2 K.

Markings:	Pass:	Fail:	Signature:

Verification test, temperature sensor pair, maximum relative error of a pair Table 2c:

Sensor pair serial No.: Temperature range specified by the supplier from °C to °C Temperature difference for the pair specified by the supplier from ____ K to ____ K Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000

Flow	Return	Maximum	MPE
temperature	temperature	relative error *)	
°C	°C	%	%

*) Calculations as in Table 8a (the maximum values of the absolute errors of the single sensors are given in Table 2b).

Pass: ____ Fail: ____ Signature: _____ Markings:

Table 2d: Insulation resistance between terminal and sheath

Temperature sensor, serial number	Insulation resistance under ambient conditions MΩ	Requirement: Insulation resistance MΩ
	at positive polarity:	≥ 100
	at negative polarity:	≥ 100
	at positive polarity:	≥ 100
	at negative polarity:	≥ 100
Markings:	Pass: Fail	: Signatu

2.2.3 Calculator (Ref.: 7.3 in R 75-2)

Table 3: Verification test

Simulated flowrate: _____ l/h

Test Return temperature *)		Temperature difference $\Delta \theta$ K		Error	MPE
No.	°C	Level	Simulated	%	%
1	50	$\Delta \theta_{\min} \leq \Delta \theta \leq 1.2 \Delta \theta_{\min}$			
2	50	$\Delta \theta_{\min} \leq \Delta \theta \leq 1.2 \Delta \theta_{\min}$			
3	50	$\Delta \theta_{\min} \leq \Delta \theta \leq 1.2 \Delta \theta_{\min}$			
1	50	$10 \text{ K} \le \Delta \theta \le 20 \text{ K}$			
2	50	$10 \text{ K} \le \Delta \theta \le 20 \text{ K}$			
3	50	$10 \text{ K} \le \Delta \theta \le 20 \text{ K}$			
1	50	$\Delta \theta_{\rm max} - 5 \ {\rm K} \le \Delta \theta \le \Delta \theta_{\rm max}$			
2	50	$\Delta \theta_{\rm max} - 5 \ {\rm K} \le \Delta \theta \le \Delta \theta_{\rm max}$			
3	50	$\Delta \theta_{\rm max} - 5 \ {\rm K} \le \Delta \theta \le \Delta \theta_{\rm max}$			

 $^{*)}$ Values in the table are examples. The return temperature shall be in the temperature range between 40 °C and 70 °C, if θ_{max} is not exceeded.

Test of meter's indication: Pass ____ Fail ____

Markings:

Pass: ____ Fail: ____ Signature: _____

2.2.4 Subassembly of the calculator and temperature sensor pair (Ref.: 7.4 in R 75-2)

Notes:

- (1) If the calculator and temperature sensor pair are tested as an inseparable sub-assembly, tests shall be done in accordance with 17.3 with the temperature sensor pair immersed in two temperature-regulated baths.
- (2) The sub-assembly of the calculator and temperature sensor pair shall be tested using the temperature ranges of 17.2 and the temperature difference ranges of 17.3.

Additionally a final test is necessary, with the temperature sensor pair immersed in two temperatureregulated baths (see the following table No. 63).

Table 4: Additional test, sensor pair is immersed in temperature baths

Simulated flowrate: _____ l/h

Test Return temperature *)		Temperature difference $\Delta \theta$		Error	MPE	
No.	°C	Level	Measured	%	%	
1	50	$3 \le \Delta \theta \le 4$				
2	50	$3 \le \Delta \theta \le 4$				
3	50	$3 \le \Delta \theta \le 4$				

*) Values in the table are examples. The return temperature shall be in the temperature range between 40 °C and 70 °C, if θ_{max} is not exceeded.

Markings:

Pass: ____ Fail: ____ Signature: ____

2.2.5 Combined instrument (Ref.: 7.5 in R 75-2)

The flow sensor, the temperature sensor pair and the calculator shall be tested separately; see 2.2.1, 2.2.2 and 2.2.3.

2.2.6 Complete instrument (Ref.: 7.6 in R 75-2)

<u>Table 5</u>: Verification test

		int				
Test	Temperature difference $\Delta \theta$		Flowrate q		Error	MPE
No.	K	ſ	m³/h		%	%
	Level	Measured	Level	Measured		
1	$\Delta \theta_{\min} \le \Delta \theta \le 1.2 \Delta \theta_{\min}$		$0.9 \ q_{\rm p} \le q \le q_{\rm p}$			
2	$\Delta \theta_{\min} \leq \Delta \theta \leq 1.2 \Delta \theta_{\min}$		$0.9 \ q_{\rm p} \le q \le q_{\rm p}$			
3	$\Delta \theta_{\min} \leq \Delta \theta \leq 1.2 \Delta \theta_{\min}$		$0.9 \ q_{\rm p} \le q \le q_{\rm p}$			
1	$10 \text{ K} \le \Delta \theta \le 20 \text{ K}$		$0.2q_{\rm p} \le q \le 0.22q_{\rm p}$			
2	$10 \text{ K} \le \Delta \theta \le 20 \text{ K}$		$0.2q_{\rm p} \le q \le 0.22q_{\rm p}$			
3	$10 \text{ K} \le \Delta \theta \le 20 \text{ K}$		$0.2q_{\rm p} \le q \le 0.22q_{\rm p}$			
1	$\Delta \theta_{\rm max}$ - 5 K $\leq \Delta \theta \leq \Delta \theta_{\rm max}$		$q_{\rm i} \le q \le 1.1 q_{\rm i}$			
2	$\Delta \theta_{\rm max}$ - 5 K $\leq \Delta \theta \leq \Delta \theta_{\rm max}$		$q_{\rm i} \le q \le 1.1 q_{\rm i}$			
3	$\Delta \theta_{\max}$ - 5 K $\leq \Delta \theta \leq \Delta \theta_{\max}$		$q_{\rm i} \le q \le 1.1 q_{\rm i}$			

Markings: Pass: ____ Fail: ____ Signature: _____

66