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Foreword 

The International Organisation of Legal Metrology (OIML) is a worldwide, intergovernmental 
organisation whose primary aim is to harmonise the regulations and metrological controls applied by 
the national metrological services, or related organisations, of its Member States. 

The main categories of OIML publications are: 

• International Recommendations (OIML R), which are model regulations that establish the 
metrological characteristics required of certain measuring instruments and which specify 
methods and equipment for checking their conformity. OIML Member States shall implement 
these Recommendations to the greatest possible extent; 

• International Documents (OIML D), which are informative in nature and which are intended 
to harmonise and improve work in the field of legal metrology; 

• International Guides (OIML G), which are also informative in nature and which are intended 
to give guidelines for the application of certain requirements to legal metrology; and 

• International Basic Publications (OIML B), which define the operating rules of the various 
OIML structures and systems. 

OIML Draft Recommendations, Documents and Guides are developed by Project Groups linked to 
Technical Committees or Subcommittees which comprise representatives from the Member States. 
Certain international and regional institutions also participate on a consultation basis. Cooperative 
agreements have been established between the OIML and certain institutions, such as ISO and the IEC, 
with the objective of avoiding contradictory requirements. Consequently, manufacturers and users of 
measuring instruments, test laboratories, etc. may simultaneously apply OIML publications and those 
of other institutions. 

International Recommendations, Documents, Guides and Basic Publications are published in English 
(E) and translated into French (F) and are subject to periodic revision. 

Additionally, the OIML participates in Joint Committees with other Institutions for the development of 
Vocabularies (OIML V) and Joint Guides (G) and periodically commissions legal metrology experts 
to write Expert Reports (OIML E). Expert Reports are intended to provide information and advice, 
and are written solely from the viewpoint of their author, without the involvement of a Technical 
Committee or Subcommittee, nor that of the CIML. Thus, they do not necessarily represent the views 
of the OIML. 

This publication – reference OIML G 1-GUM 6:2020 (E) – contains a reproduction of JCGM 
GUM 6:2020 that was developed by the Joint Committee for Guides in Metrology (JCGM, of which 
the OIML is a Member Organisation), and is published as an OIML Guide following the terms of the 
JCGM Charter. 

OIML Publications may be downloaded from the OIML website in the form of PDF files. Additional 
information on OIML Publications may be obtained from the Organisation’s headquarters: 

Bureau International de Métrologie Légale 
11, rue Turgot - 75009 Paris – France 
Telephone: 33 (0)1 48 78 12 82 
Fax: 33 (0)1 42 82 17 27 
E-mail: biml@oiml.org 
Internet: www.oiml.org 
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Note 

To date, the OIML has also published the following JCGM documents: 

 OIML G 1-100:2008 Evaluation of measurement data − Guide to the expression of uncertainty 
in measurement – (JCGM 100:2008) 

 OIML G 1-101:2008 Evaluation of measurement data − Supplement 1 to the “Guide to the 
expression of uncertainty in measurement − Propagation of distributions using a Monte Carlo 
method” – (JCGM 101:2008) 

 OIML G 1-102:2011 Evaluation of measurement data − Supplement 2 to the “Guide to the 
expression of uncertainty in measurement” - Extension to any number of output quantities – 
(JCGM 102:2011) 

 OIML G 1-104:2009 Evaluation of measurement data − An introduction to the “Guide to the 
expression of uncertainty in measurement” and related documents – (JCGM 102:2009) 

 OIML G 1-106:2012 Evaluation of measurement data − The role of measurement uncertainty 
in conformity assessment – (JCGM 102:2009) 

 OIML V 2-200:2012 International Vocabulary of Metrology – Basic and General Concepts and 
Associated Terms (VIM). 3rd Edition (Bilingual E/F) – (Edition 2010 with minor corrections) – 
(JCGM 200:2012) 
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Copyright of this JCGM guidance document is shared jointly by the JCGM member organizations
(BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML).

Copyright

Even if electronic versions are available free of charge on the website of one or more of the JCGM
member organizations, economic and moral copyrights related to all JCGM publications are inter-
nationally protected. The JCGM does not, without its written authorisation, permit third parties
to rewrite or re-brand issues, to sell copies to the public, or to broadcast or use on-line its publica-
tions. Equally, the JCGM also objects to distortion, augmentation or mutilation of its publications,
including its titles, slogans and logos, and those of its member organizations.

Official versions and translations

The only official versions of documents are those published by the JCGM, in their original languages.

The JCGM’s publications may be translated into languages other than those in which the documents
were originally published by the JCGM. Permission must be obtained from the JCGM before a
translation can be made. All translations should respect the original and official format of the
formulae and units (without any conversion to other formulae or units), and contain the following
statement (to be translated into the chosen language):

All JCGM’s products are internationally protected by copyright. This translation of
the original JCGM document has been produced with the permission of the JCGM.
The JCGM retains full internationally protected copyright on the design and content of
this document and on the JCGM’s titles, slogan and logos. The member organizations
of the JCGM also retain full internationally protected right on their titles, slogans and
logos included in the JCGM’s publications. The only official version is the document
published by the JCGM, in the original languages.

The JCGM does not accept any liability for the relevance, accuracy, completeness or quality of the
information and materials offered in any translation. A copy of the translation shall be provided to
the JCGM at the time of publication.

Reproduction

The JCGM’s publications may be reproduced, provided written permission has been granted by
the JCGM. A sample of any reproduced document shall be provided to the JCGM at the time of
reproduction and contain the following statement:

This document is reproduced with the permission of the JCGM, which retains full
internationally protected copyright on the design and content of this document and
on the JCGM’s titles, slogans and logos. The member organizations of the JCGM also
retain full internationally protected right on their titles, slogans and logos included
in the JCGM’s publications. The only official versions are the original versions of the
documents published by the JCGM.

Disclaimer

The JCGM and its member organizations have published this document to enhance access to infor-
mation about metrology. They endeavor to update it on a regular basis, but cannot guarantee the
accuracy at all times and shall not be responsible for any direct or indirect damage that may result
from its use. Any reference to products of any kind (including but not restricted to any software,
data or hardware) or links to websites, over which the JCGM and its member organizations have
no control and for which they assume no responsibility, does not imply any approval, endorsement
or recommendation by the JCGM and its member organizations.
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Foreword

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director of
the Bureau International des Poids et Mesures (BIPM), was created by the seven interna-
tional organizations that had originally in 1993 prepared the ‘Guide to the expression of
uncertainty in measurement’ and the ‘International vocabulary of basic and general terms
in metrology’. The JCGM assumed responsibility for these two documents from the ISO
Technical Advisory Group 4 (TAG4).

The Joint Committee is formed by the BIPM with the International Electrotechnical Com-
mission (IEC), the International Federation of Clinical Chemistry and Laboratory Medicine
(IFCC), the International Laboratory Accreditation Cooperation (ILAC), the International
Organization for Standardization (ISO), the International Union of Pure and Applied
Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP), and
the International Organization of Legal Metrology (OIML).

JCGM has two Working Groups. Working Group 1, ‘Expression of uncertainty in mea-
surement’, has the task to promote the use of the ‘Guide to the expression of uncertainty
in measurement’ and to prepare documents for its broad application. Working Group 2,
‘Working Group on International vocabulary of basic and general terms in metrology’, has
the task to revise and promote the use of the ‘International vocabulary of basic and general
terms in metrology’ (the ‘VIM’).

In 2008 the JCGM made available a slightly revised version (mainly correcting minor er-
rors) of the ‘Guide to the expression of uncertainty in measurement’, labelling the docu-
ment ‘JCGM 100:2008’. In 2017 the JCGM rebranded the documents in its portfolio that
have been produced by Working Group 1 or are to be developed by that Group: the whole
suite of documents became known as the ‘Guide to the expression of uncertainty in mea-
surement’ or ‘GUM’. This document, previously known as JCGM 103, Supplement 3 to the
GUM, is the first to be published as a part of that portfolio, and is entitled and numbered
accordingly.

The present guide is concerned with the development and use of measurement models, and
supports the documents in the entire suite of JCGM documents concerned with uncertainty
in measurement. The guide has been prepared by Working Group 1 of the JCGM, and has
benefited from detailed reviews undertaken by member organizations of the JCGM and
National Metrology Institutes.

© JCGM 2020 – All rights reserved
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Introduction

A measurement model constitutes a relationship between the output quantities or mea-
surands (the quantities intended to be measured) and the input quantities known to be
involved in the measurement. There are several reasons for modelling a measurement.
Models assist in developing a quantitative understanding of the measurement and in im-
proving the measurement. A model enables values of the output quantities to be obtained
given the values of the input quantities. Additionally, a model not only allows propaga-
tion of uncertainty from the input quantities to the output quantities; it also provides an
understanding of the principal contributions to uncertainty. This document is accordingly
concerned with the development of a measurement model and the practical use of the
model.

One of the purposes of measurement is to assist in making decisions. The reliability of these
decisions and the related risks depend on the values obtained for the output quantities and
the associated uncertainties. In turn, these decisions depend on a suitable measurement
model and the quality of information about the input quantities.

Although the development of a measurement model crucially depends on the nature of the
measurement, some generic guidance on aspects of modelling is possible. A measurement
model might be a straightforward mathematical relationship, such as the ideal gas law, or,
at the other extreme, involve a sophisticated numerical algorithm for its evaluation, such
as the detection of peaks in a signal and the determination of peak parameters.

A measurement model may take various forms: theoretical, empirical or hybrid (part-
theoretical, part-empirical). It might have a single output quantity or more than one out-
put quantity. The output quantity may or may not be expressed directly in terms of the
input quantities. The quantities in the measurement model may be real-valued or complex-
valued. Measurement models may be nested or multi-stage, in the sense that input quan-
tities in one stage are output quantities from a previous stage, as occurs, for instance,
in the dissemination of measurement standards or in calibration. Measurement models
might describe time series of observations, including drift, and dynamic measurement. A
measurement model may also take the form of a statistical model. In this document the
concept ‘measurement model’ is intended in this broader meaning.

In developing or using a measurement model there are important choices to be made.
The selection of a model that is adequate or fit for purpose is a key issue. Particularly for
empirical models, there is choice of representation (or parametrization) of the families of
functions concerned (polynomials, polynomial splines or rational functions, etc.). Certain
choices can be far superior to others in their numerical behaviour when the model is im-
plemented on a computer. The uncertainty arising from the choice of model is a necessary
consideration.

In many disciplines, a basic measurement model requires extension to incorporate effects
such as temperature corrections arising from the measurement to enable values for output
quantities and the associated uncertainties to be obtained reliably.

Following the introduction in 1993 of the Guide to the expression of uncertainty in mea-
surement, or GUM (also known as JCGM 100:2008), the practice of uncertainty evaluation
has broadened to use a wider variety of models and methods. To reflect this, this Guide
includes an introduction to statistical models for measurement modelling (clause 11) and
additional guidance on modelling random variation in Annex C.

© JCGM 2020 – All rights reserved
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Guide to the expression of uncertainty in
measurement — Part 6: Developing and using
measurement models

1 Scope

This document provides guidance on developing and using a measurement model and
also covers the assessment of the adequacy of a measurement model. The document is
of particular interest to developers of measurement procedures, working instructions and
documentary standards. The model describes the relationship between the output quantity
(the measurand) and the input quantities known to be involved in the measurement. The
model is used to obtain a value for the measurand and an associated uncertainty. Measure-
ment models are also used in, for example, design studies, simulation of processes, and in
engineering, research and development.

This document explains how to accommodate in a measurement model the quantities in-
volved. These quantities relate i) to the phenomenon or phenomena on which the mea-
surement is based, that is, the measurement principle, ii) to effects arising in the specific
measurement, and iii) to the interaction with the artefact or sample subject to measure-
ment.

The guidance provided is organised in accordance with a work flow that could be con-
templated when developing a measurement model from the beginning. This work flow
starts with the specification of the measurand (clause 6). Then the measurement principle
is modelled (clause 7) and an appropriate form of the model is chosen (clause 8). The
basic model thus obtained is extended by identifying (clause 9) and adding (clause 10)
effects arising from the measurement and the artefact or sample subject to measurement.
Guidance on assessing the adequacy of the resulting measurement model is given in clause
12. The distinction between the basic model and the (complete) measurement model in
the work flow should be helpful to those readers who already have a substantial part of
the measurement model in place, but would like to verify that it contains all effects arising
from the measurement so that it is fit for purpose.

Guidance on the assignment of probability distributions to the quantities appearing in the
measurement model is given in JCGM 100:2008 and JCGM 101:2008. In clause 11, this
guidance is supplemented by describing how statistical models can be developed and used
for this purpose.

When using a measurement model, numerical problems can arise including computational
effects such as rounding and numerical overflow. It is demonstrated how such problems
can often be alleviated by expressing a model differently so that it performs well in cal-
culations. It is also shown how a reformulation of the model can sometimes be used to
eliminate some correlation effects among the input quantities when such dependencies
exist.

Examples from a number of metrology disciplines illustrate the guidance provided in this
document.

© JCGM 2020 – All rights reserved
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2 Normative references

The following documents are referred to in the text in such a way that some or all of
their content constitutes requirements of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measurement data —
Guide to the expression of uncertainty in measurement. Joint Committee for Guides in
Metrology, JCGM 100:2008.

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measurement data —
Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ — Propaga-
tion of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology,
JCGM 101:2008.

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measurement data —
Supplement 2 to the ‘Guide to the expression of uncertainty in measurement’ — Exten-
sion to any number of output quantities. Joint Committee for Guides in Metrology, JCGM
102:2011.

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. International vocabulary of metrol-
ogy — Basic and general concepts and associated terms. Joint Committee for Guides in
Metrology, JCGM 200:2012.

3 Terms and definitions

The terms and definitions of JCGM 100:2008, JCGM 101:2008, JCGM 102:2011 and JCGM
200:2012 apply.

ISO, IEC and IUPAC maintain terminological databases for use in standardization at the
following addresses:

— IEC Electropedia: available at http://www.electropedia.org
— ISO Online Browsing Platform: available at http://www.iso.org/obp
— IUPAC Gold Book: available at http://www.goldbook.iupac.org

4 Conventions and notation

4.1 The conventions and notation in JCGM 100:2008, JCGM 101:2008 and
JCGM 102:2011 are adopted. Principal symbols used throughout the document are ex-
plained in annex A. Other symbols and those appearing in examples are explained at first
occurrence.

4.2 Most examples in this document contain numerical values rounded to a number of
decimal digits appropriate to the application. Because of rounding there are often numer-
ical inconsistencies among the values presented. An instance is the correlation coefficient
of −0.817 in the example in 8.1.6. It is obtained from the computer-held values of two

© JCGM 2020 – All rights reserved
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standard uncertainties and a covariance. If it were computed from the three presented
values (three significant decimal digits), its value correct to three decimal digits would be
−0.822.

4.3 Links to numbered subclauses are indicated by underlining.

5 Basic principles

5.1 A measurand (see JCGM 200:2012, 2.3) is in many cases not measured directly, but
is indirectly determined from other quantities (see JCGM 200:2012, 1.1) to which it is
related by a measurement model (see JCGM 200:2012, 2.48) such as formula (1) in 5.2. The
measurement model is a mathematical expression or a set of such expressions (see JCGM
100:2008, 4.1.2), comprising all the quantities known to be involved in a measurement.
It enables a value (see JCGM 200:2012, 1.19) of the measurand to be provided and an
associated standard uncertainty to be evaluated. The measurement model may be specified
wholly or partly in the form of an algorithm. The quantities to which the measurand is
related constitute the input quantities (see JCGM 200:2012, 2.50) in the measurement
model. The measurand constitutes the output quantity (see JCGM 200:2012, 2.51).

5.2 Many measurements are modelled by a real functional relationship f between N real-
valued input quantities X1, . . . , XN and a single real-valued output quantity (or measurand)
Y in the form

Y = f (X1, . . . , XN ). (1)

This simple form is called a real explicit univariate measurement model; real since all
quantities involved take real (rather than complex) values, explicit because a value for Y
can be computed directly given values of X1, . . . , XN , and univariate since Y is a single,
scalar quantity. However, it does not apply for all measurements. A measurement model
can be complex, involving complex-valued quantities (see JCGM 102:2011, 3.2). It can
be implicit where a value for Y cannot be determined directly given values of X1, . . . , XN
(see 13.5). The measurement model can be multivariate where there is more than one
measurand, denoted by Y1, . . . , Ym; for further information, see 13.4 and JCGM 102:2011.

EXAMPLE Volume of a cylinder

The volume of a cylinder is given by the measurement model

V =
π

4
Ld2

in which cylinder length L and diameter d are the N = 2 input quantities, corresponding to X1 and
X2, and an output quantity V corresponding to Y .

5.3 The process of building a measurement model can be subdivided into the following
steps, each step being described in the indicated clause:

a) Select and specify the measurand (see clause 6).
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b) Model the measurement principle, thus providing a basic model for this purpose (see
clause 7), choosing an appropriate mathematical form (see clauses 8 and 11).

c) Identify effects involved in the measurement (see clause 9).
d) Extend the basic model as necessary to include terms accounting for these effects

(see clauses 10 and 11).
e) Assess the resulting measurement model for adequacy (see clause 12).

In any one instance, a number of passes through the process may be required, especially
following step c). It may be more efficient or effective to take the steps as listed in a
different order.

5.4 The manner in which a measurement model is used to obtain a value for the measur-
and (or values for the measurands) and evaluate the associated standard uncertainty (or
covariance matrix) depends on its mathematical form (see clause 13). JCGM 100:2008
mainly considers explicit univariate models and applies the law of propagation of uncer-
tainty (LPU). JCGM 102:2011 gives guidance on the use of generalizations of LPU for
multivariate models and implicit models. For non-linear models, the use of the Monte
Carlo method of JCGM 101:2008 (univariate measurement models) and JCGM 102:2011
(multivariate models) is often more appropriate (see clause 13).

5.5 The measurement model is a mathematical relationship among quantities, and as
such it is subject to the rules of quantity calculus [20]. The same symbols used for the quan-
tities are also used for the corresponding random variables (see JCGM 100:2008, C.2.2),
whose probability distributions (see JCGM 101:2008, 3.1) describe the available knowledge
about the quantities. Therefore, the measurement model can also be considered to be a
model involving random variables, subject to the rules of mathematical statistics. The law
of propagation of uncertainty as described in JCGM 100:2008, 5.1 and 5.2 uses a simple
property of the transformation of random variables when only expectations and variances
(and, perhaps, covariances) are used, rather than the whole distributions.

EXAMPLE Mass of a spherical weight

The mass of a weight that has been machined in the form of a sphere from a block of material is
given by

m=
π

6
d3ρ, (2)

where d is the diameter of the weight and ρ is the density of the material.

Expression (2) is a simple, well-known physical model that is idealized, applying to a perfect sphere
and relating the output quantity mass to the input quantities diameter and density. At the same
time, d and ρ can be considered as random variables describing the available information on the
corresponding physical quantities obtained, for instance, from a dimensional measurement made
with a vernier caliper and from a table of reference data, respectively. Thus, expression (2) also
describes how to transform this information about the input physical quantities to the mass m of
the weight (the measurand).

5.6 When building a measurement model that is fit for purpose, all effects known to affect
the measurement result should be considered. The omission of a contribution can lead to
an unrealistically small uncertainty associated with a value of the measurand [156], and
even to a wrong value of the measurand.
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Considerations when building a measurement model are given in 9.3. Also see JCGM
100:2008, 3.4.

5.7 The fitness for purpose of a measurement model can encompass considerations made
before measurement. Such aspects include the measurement capability [85] (see JCGM
200, 2.6) in the case of a laboratory routinely performing calibrations. Fitness for purpose
can also encompass the cost of measurement at a given level of uncertainty compared
with the consequent costs of incorrect decisions of conformity (see also JCGM 106:2012
[21]). The measurand, which in the terminology of conformity assessment is a ‘quality
characteristic of the entity’, can be, as in statistics, either

— a measure of ‘location’, for instance, a quantity relating to an entity such as the mass
of a single object, an error in mass (deviation from a nominal value), or an average
mass of a batch of objects, or

— a measure of ‘dispersion’, for instance, the standard deviation in mass amongst a
batch of objects in a manufacturing process.

5.8 When developing a measurement model, the ranges of possible values of the input
quantities and output quantities should be considered. The model should be capable of
providing credible estimates and associated uncertainties for all output quantities over the
required ranges of the input quantities, which should be specified as appropriate. The
measurement model should only be used within the ranges of all quantities for which it
has been developed and assessed for adequacy. See 13.2.

5.9 One aspect of specifying the domain of validity of the measurement model (see also
5.8) is to identify any restrictions on the domains of the quantities involved in the mea-
surement model. Some quantities are necessarily positive (or at least non-negative). Some
quantities might have lower and upper limits. There can be interrelationships between two
or more quantities that need to be included in the measurement model.

EXAMPLE Quantities having restrictions

— Positive quantities, for instance, mass and volume.
— Quantity with limits, for instance, a mass fraction can only take values between zero and one.
— Quantities having interrelationships, for instance, the relative proportions (fractions) of all

components (hydrocarbons and other molecules) of a natural gas sum to a constant.

Such quantities can sometimes be re-expressed by applying transformations. For instance,
denoting by θ a new real quantity that is unconstrained:

— a quantity q is positive if re-expressed as q = θ2,
— a quantity q lies between a and b if re-expressed as q = a+ (b− a) sin2 θ , and
— quantities q1 and q2 sum to unity by the transformation q1 = sin2 θ , q2 = cos2 θ .

6 Specifying the measurand

6.1 The choice of the measurand depends on the purpose of the measurement and may
take account of the target measurement uncertainty (see JCGM 200, 2.34). Other processes
and measurands are possible and the appropriate choice depends on the application of the
measurement result.
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NOTE Some measurands may be time-dependent such as in 10.6 and annex B.

EXAMPLE Diameter of a cylindrical component

In dimensional metrology, the diameter of a component of cylindrical form is obtained from knowl-
edge of the profile of a right section of the component. If the component is a cylindrical piston,
which is required to fit inside the cylinder of a piston-cylinder assembly, the measurand is the di-
ameter of the minimum circumscribing circle (MCC) for the profile. Figure 1 (left) gives the MCC
for a lobed profile.

Figure 1: Minimum circumscribed circle (left, blue) and maximum inscribed circle (right, red),
described by thin lines, for lobed profiles indicated by thick curved lines

If the component is a cylinder, which is required to contain a cylindrical piston in a piston-cylinder
assembly, the measurand is the diameter of the maximum inscribed circle (MIC) for the profile.
Figure 1 (right) gives the MIC for a lobed profile.

The profiles exhibit lobing due to the machining process used to produce the corresponding parts.
For further information see reference [68] (Calibration Guide 6). Reference [6] describes how to
determine MCC and MIC by expressing the problems as optimization problems with linear con-
straints, a ‘standard form’ for solution.

6.2 Taking account of any given target measurement uncertainty, the measurand should
be specified sufficiently well so that its value is unique for all practical purposes related to
the measurement. Regulations, legislation or contracts can contain stipulations concerning
the measurand, and often these documents specify a measurand to the relevant extent, for
instance, by reference to an international standard (such as ISO or IEC) or OIML recom-
mendation. In general, an adequate specification of the measurand would often involve
location in space and time of the measurement, or specification of reference conditions of,
for example, temperature and pressure.

EXAMPLE Length of a gauge block (also see example in 13.3)

The (central) length of a gauge block is defined as the perpendicular distance between the central
point of one end face and a plane in contact with the opposite end face, when the gauge block is
at 20 °C.

6.3 In material testing, the measurand is often some property of an entire bulk of material
under consideration. The measurement result to be obtained is required to be valid for
the bulk (population) from which the sample is taken for measurement or testing. In such
cases the measured value can be obtained through a process of sampling and measurement.
Aspects such as the uncertainty arising from sampling, or also sample processing, are often
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part of the specification of the measurand in these circumstances. Often these aspects are
covered in a sampling plan (see, for instance, ISO/IEC 17025 [100]). Also see 6.1.

EXAMPLE 1 Rockwell C hardness

Rockwell C hardness is defined as hardness value, measured in accordance with ISO 6508, obtained
using a diamond cone indenter and a force of 1471 N [9,95]. Possible ways to specify the measur-
and relating to Rockwell C hardness of a material can relate to a specified point on the material (or
on a sample from it) at a specified time, and mean Rockwell C hardness of the material. The latter
is typically obtained as the average over designated points (in the material itself or in the sample) at
a specified time. The specification of the measurand as ‘Rockwell C hardness of the material’ would
only be adequate if the sample (and the material) were substantially homogeneous and stable for
the intended use of the material.

EXAMPLE 2 Emission monitoring

Two possible measurands relating to a component in an effluent are its mass concentration at the
time of sampling and its total mass over a calendar year. In the fields related to power production,
emissions are often also qualified in terms of mass emitted per unit of energy produced.

EXAMPLE 3 Biological material measurement

For a consignment of biological material subject to measurement, the measurand might relate to
a particular sample of the material, a set of samples, the method used to make the measurement,
the laboratory performing the measurement, or a set of laboratories involved in making the mea-
surement.

6.4 The specification of a measurand often requires describing the conditions for which
the measurement result is valid.

EXAMPLE 1 Catalytic activity

The catalytic activity of an enzyme depends on the pH, temperature and other conditions. A com-
plete specification of the measurand therefore requires these conditions to be specified.

EXAMPLE 2 Calorific value of natural gas

The calorific value (or, more correctly, the enthalpy of combustion) of natural gas is a function of
temperature and pressure. When specifying the measurand, the relevant temperature and pressure
are part of that specification. For example, reference conditions could be 288.15 K and 101.325 kPa
[87]. Often there are contractually agreed reference conditions specified.

6.5 The measurement procedure should, as appropriate, address how the result is con-
verted from the conditions of measurement to the conditions for which it is reported.

EXAMPLE 1 Length of a gauge block (also see example in 13.3)

The standard reference temperature for dimensional metrology is 20 °C [86]. This standard ref-
erence temperature is exact, so that the laboratory temperature, even in the most sophisticated
systems, can only approximate it. Consequently, the measurement model for the length of the
gauge block in the example in 6.2 contains a correction to that length based on i) the tempera-
ture difference between the reference temperature and the laboratory temperature (for example,
23 °C), and ii) the average coefficient of linear expansion in that range. Even when the indicated
laboratory temperature is 20 °C and the value of the correction would be equal to zero, there would
still be a non-zero associated uncertainty.

EXAMPLE 2 Natural gas volume

Natural gas volume is measured at the metering pressure and temperature of the gas in the transfer
line. The volume is reported at reference conditions for pressure and temperature, which are agreed
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between the contracting parties. The conversion of the natural gas volume at metering to reference
conditions involves, among others, the compressibility factor of the natural gas at metering and
reference conditions. The conversion is part of the measurement model.

6.6 In general, the same measurand can be represented by different models, depend-
ing primarily on the measurement principle chosen for its determination. Even within the
same measurement principle, different models would result from different practical imple-
mentations of that principle, from the level of detail in the description of the measurement
and the specific mathematical representation chosen among many that are often possible.

EXAMPLE SI value of the Boltzmann constant

The SI value of the Boltzmann constant [125]was obtained from three different measurement prin-
ciples, to which correspond as many measurement methods: acoustic gas thermometry, dielectric
constant gas thermometry and Johnson noise thermometry. A specific measurement model holds
for each of these methods. In addition, differences exist even among the models of those laborato-
ries using the same method, due to different practical implementations of the method, and perhaps
to the level of detail in identifying effects.

6.7 Ultimately, the measurement model describes the realization of the measurand ac-
cording to the knowledge of those involved in the measurement. The description may not
fully represent the measurand because some unrecognized effects were not included. As
a consequence, the uncertainty associated with the estimate of the measurand will not
contain the contributions from those effects.

EXAMPLE Mass comparison

In modern mass comparators, the mass mw of a standard weight W is determined (say, in vacuum)
by comparing the forces Fw = gwmw and Fr = grmr exerted on the comparator pan by W and by a
reference mass standard R, subjected to local accelerations due to gravity gw and gr, respectively.
The pan is held at a constant level by a servo mechanism. In most applications, it can safely be
assumed that gw = gr = g, so that the model takes the simple form mw = mr −∆m, where ∆m is
the comparator indication and g has been dropped.

The assumption gw = gr = g is correct when the centres of gravity of the two standards during
weighings lie at the same elevation, and can anyway be adequate depending on the target un-
certainty. If this is not the case, the model may need to be extended, usually with a correction (a
further input quantity to the measurement model) to the mass mr of the reference standard, having
the form

mr
∆g
∆h

1
g
(hr − hw) ,

where ∆g/(g∆h) ≈ −2.4× 10−7 m−1 is the relative vertical gradient of the local acceleration due
to gravity and hr−hw is the difference in elevation between the centres of gravity of the standards
being compared. Whereas the uncertainty associated with the correction is normally negligible,
the correction itself can be significant. This is the case in the comparisons at the highest level
of standards made of materials having very different densities (and consequently different sizes
and sometimes shapes), such as silicon, stainless steel and platinum-iridium standards. Neglecting
to include such a correction in the model would imply an incomplete description of the measur-
and, resulting in an error with respect to a correctly specified measurand. The error amounts to
about −3µg when comparing a stainless steel standard with a platinum-iridium prototype. This
value is of the same order of magnitude of the standard uncertainty associated with the estimate
of the measurand.
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7 Modelling the measurement principle

7.1 General

The measurement principle (see JCGM 200, 2.4) enables a basic model, often based on
a scientific law, or combination of such laws, to be established. A set of input quantities,
namely, those quantities appearing in the laws underlying the measurement, follows from
the measurement principle.

NOTE In many standardized test methods, as published by ISO and IEC for instance, the measure-
ment principle is already described in the form of one or more mathematical formulæ.

EXAMPLE Simple theoretical model of mass measurement

The mass m of a weight is measured with a spring balance. The relationship between the restoring
force F exerted by the spring and m at equilibrium is F = mg, where g is the acceleration due
to gravity. Hooke’s law relating F to the extension X of the spring and the spring constant k is
F = kX . Thus, a theoretical measurement model relating mass to extension, spring constant and
acceleration due to gravity is

m=
k
g

X .

Available knowledge about X , k and g enables knowledge about m to be inferred. Since Hooke’s
law only applies when the extension is sufficiently small, this measurement model should only be
used within this limit. The largest mass, for a given k, for which the restoring force is proportional
to the extension of the spring defines the domain of validity of the measurement model (see 5.8).

7.2 Theoretical, empirical and hybrid measurement models

7.2.1 A theoretical measurement model is based on scientific theory that describes how
the output quantities in the measurement model relate to the input quantities.

EXAMPLE 1 SI value of the Avogadro constant

The Avogadro constant NA is the universal proportionality constant relating in any sample the
number N(X) of entities X and the corresponding amount of substance n(X),

NA =
N(X)
n(X)

.

In the SI, the Avogadro constant has the exact value NA = 6.022140 76× 1023 mol−1 [125]. One
of the most accurate methods that was used to determine this value is the X-ray crystal density
(XRCD) method [110]. In XRCD, the sample is a near-perfect sphere of mono-crystalline, isotopi-
cally enriched silicon (99.99 % 28Si). The number of silicon atoms in this sample is N(Si) = 8V/a3

0,
V and a3

0 being respectively the volumes of the sphere and of the unit atomic cell, containing 8
atoms. The amount of silicon is n(Si) = m/M , where m and M are the mass of the sphere and the
molar mass of silicon. Therefore the definition of the Avogadro constant may be written as

NA =
N(Si)
n(Si)

=
8V
a3

0

M
m

,

which is the basic model describing the measurement principle for the XRCD experiment.
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EXAMPLE 2 Pressure generated by a pressure balance (continued in 8.1.4)

The pressure p generated by a pressure balance is given implicitly by the measurement model

p =
m
�

1−
ρa

ρm

�

g

A0 (1+λp) [1+α (t − tref)]
, (3)

where m is the total applied mass, ρa and ρm are respectively the mass densities of air and the
applied mass, g is the local acceleration due to gravity, A0 is the effective area of the piston-cylinder
assembly at zero pressure and a reference temperature, λ is the distortion coefficient of the piston-
cylinder assembly, α is the temperature coefficient, t is Celsius temperature, and tref is a reference
temperature, 20 °C, say [113]. There are eight input quantities A0,λ,α, t, m,ρa,ρm, g and a single
output quantity p.

7.2.2 Sometimes the measurement principle can only be formulated in terms of an em-
pirical model. For such a model, the measurand would often be expressed in terms of
mathematical functions such as polynomials, polynomial splines or rational functions, all
of which have adjustable parameters. These models are often expressed as statistical mod-
els (see clause 11). Estimates of the parameters of these functions can be provided by
reference tables (for instance, see example 2 in 8.3.3) or obtained by data analysis (least-
squares regression, say), together with the associated standard uncertainties and covari-
ances.

EXAMPLE Industrial platinum resistance thermometer

Platinum resistance thermometers of nominal resistance 100Ω, also called Pt100 sensors, are used
in industry for accurate measurement of temperature. The resistance R of the sensor as a function of
Celsius temperature t is modelled over the interval [−200 °C, 800 °C] using the empirical Callendar-
Van Dusen equation [51]

R(t) =

�

R0

�

1+ At + Bt2 + C t3(t − tref)
�

, −200 °C≤ t < 0 °C,
R0

�

1+ At + Bt2
�

, 0 °C≤ t ≤ 800 °C,
(4)

where tref = 100 °C, being a reference value, has no associated uncertainty, and R0, A, B and C are
determined by calibration. Typical values are bR0 = 100Ω, bA= 3.9× 10−3 °C−1, bB = −6× 10−7 °C−2,
and bC = −4× 10−12 °C−4.

Expression (4) is then used to provide values of the measurand t given values for the input quan-
tities R0, A, B, C and R and is thus an implicit measurement model (see 13.5).

7.2.3 Most measurement models are hybrid, that is, they combine aspects of theoretical
and empirical models. Even if the complete measurement principle is based on scientific
theory, there are often quantities involved in the measurement that need to be included in
the measurement model and are modelled empirically (also see clauses 9 and 10).

EXAMPLE Spectral irradiance of a lamp: hybrid model

A tungsten filament lamp source emits light when its filament is heated by an electric current.
The primary physics behind this process is that of a hot source and to first order the lamp acts in a
manner similar to a blackbody source. The spectral radiance of a blackbody source can be modelled
using the Planck function

L(λ, T ) =
c1,L

λ5{exp[c2/(λT )]− 1}
,
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where λ denotes wavelength, T the blackbody temperature and the coefficients c1,L and c2 can be
expressed in terms of fundamental physical constants [5].

Since lamps are not ideal blackbody sources, the emissivity of the tungsten filament and the trans-
mittance of the bulb should be considered. For tungsten filament lamps used as standards, their
spectral irradiance varies smoothly with wavelength and can be modelled by the product of a poly-
nomial in λ and a Planck function. (Spectral irradiance is related to radiance by a constant factor
depending on geometry.) Such a function is known as a Planck-polynomial function [41,79]:

F(λ, T, a1, . . . , ap) = L(λ, T )Gp(λ, a1, . . . , ap). (5)

The correction factor Gp(λ, a1, . . . , ap) is an empirical polynomial function of order p in λ with
adjustable parameters a1, . . . , ap. These parameters are estimated by fitting model (5) to suitable
data using regression analysis.

7.3 Differential equation models

7.3.1 Many theoretical models used in science, engineering and medicine specify the
rates at which some quantities vary as functions of time and other quantities, and are
formulated as differential equations [152]. In some cases, the differential equation is only
used as a foundation to develop simpler models.

EXAMPLE Vapour pressure at vapour-liquid equilibrium

The vapour pressure equations used in example 1 in 8.1.4 are solutions of the Clausius-Clapeyron
relation, which is a differential equation,

dp
dT
=
∆s
∆v

, (6)

where p denotes the pressure, the measurand, and T the thermodynamic temperature of the
vapour-liquid equilibrium, and ∆s and ∆v the differences in specific entropy and molar volume,
respectively, between the two phases [11].

7.3.2 In measurement models that involve differential equations, the measurand is typ-
ically a function of coefficients in these equations. These coefficients are estimated based
on empirical data, usually by application of a statistical method (see also clause 11). The
equations are solved in the process, often a number of times, usually employing numerical
methods, and typically a Monte Carlo method, similar to that described in JCGM 101:2008,
is used for uncertainty evaluation [31,55,137,153].

EXAMPLE SIR model for influenza infection

The numbers of cases reported once per week during an influenza epidemic in an isolated village
with n = 327 inhabitants, during the first 11 weeks of their influenza season were (1,0), (8,0),
(15, 4), (22, 26), (29,61), (36, 67), (43,42), (50, 40), (57,23), (64, 13), (71,5). The first element
of each pair is the day since the beginning of the season, and the second is the number of people
known to have influenza on that day. For instance, the first pair means that on day 1 there were 0
cases, and the last pair means that on day 71 there were 5 cases.

The simple SIR model [102] for the spread of infectious diseases through a population does not
contemplate births or deaths occurring during the course of the epidemic. It regards the population
as partitioned into three subsets at each time instant t: those that are susceptible to the infection
but not yet sick, S(t), those that are infected, I(t), and those that have already recovered from
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the infection and are no longer contagious, R(t). Their numbers add up to the population total,
S(t) + I(t) + R(t) = n, and satisfy three simultaneous differential equations:

dS
dt
= −β I(t)S(t)/n,

dI
dt
= β I(t)S(t)/n− γI(t),

dR
dt
= γI(t), (7)

for some specified non-negative initial values S(0), I(0) and R(0). The model parameters are such
that 1/γ is the typical duration of the infection in an infected person and the parameter of interest
is the the average number of individuals directly infected by an infectious person in a population
where everyone is susceptible, known as the basic reproduction number R0 = β/γ. The model is
completed by assuming that the actual number of cases at time t is a random variable N(t) with a
Poisson distribution with mean I(t).

Computing the maximum-likelihood estimates [133] of β , γ and S(0) involves finding the values of
these parameters that maximize a product of Poisson probability densities (one for each of the 11
days with a reported number of cases), whose means are I(1), I(8), . . . , I(71). Since equations (7)
cannot be solved analytically, each time the likelihood function needs to be evaluated in the course
of the maximization process, these differential equations have to be solved, also numerically. The
resulting parameter estimates are bβ = 0.34d−1 and bγ= 0.14 d−1, and hence bR0 = 2.4. Figure 2
(left) depicts the data, the model as fitted to the observations, and the fitted values on the same
days when the numbers of influenza cases were observed.
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Figure 2: Observed numbers of cases (large, red dots), calibrated model bI (solid blue curve), and
expected numbers of cases (small blue dots) corresponding to the observed numbers of cases and
(right) probability density of R0 based on a sample of size 1000 drawn from its distribution by a
Monte Carlo method, with the blue dot marking the maximum-likelihood estimate, the shaded area
comprising 95 % of the area under the curve, and the thick, horizontal red line segment representing
a 95 % coverage interval for the reproduction number

The uncertainty associated with the basic reproduction number was evaluated by application of the
parametric bootstrap [53], a Monte Carlo method. This method is particularly onerous computa-
tionally, because it involves repeating the following steps a substantial number K of times: (i) draw
one sample value from each of the 11 Poisson distributions whose means are the values bI(1), bI(8),
. . . , bI(71) corresponding to the solution of equations (7) for β = bβ , γ= bγ and S0 = bS0; (ii) estimate
the same parameters, again via maximum likelihood, using the simulated draws, and compute the
corresponding value of the basic reproduction number.

A sample of modest size K = 1000 drawn from the probability distribution of R0 as just described
(figure 2, right) had standard deviation 0.12, which is used as the standard uncertainty u(R0)
associated with R0. A 95 % coverage interval for R0 deduced from the sample ranged from 2.2 to
2.7.
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8 Choosing the form of the measurement model

8.1 General

8.1.1 The same measurement principle can give rise to different models. Therefore, the
experimenter is often faced with the need to choose a suitable form for the model from
various possible forms. This clause gives guidance on the criteria that can be used in
making this choice. Some of the forms of model are considered, with examples, in clause
13.

8.1.2 A measurement model should be capable of accounting for all information that is
relevant and available. The following aspects should be taken into consideration when
choosing the form of the model (for further information or specific guidance, see the ref-
erenced subclauses):

Availability of a reliable theoretical form The extent to which a model can be based on
the measurement principle, usually a well-established scientific law, should be con-
sidered. A model based on a reliable scientific principle is likely to require less work
to check its adequacy than does an empirical or hybrid model. See clauses 7 and 12.

Target measurement uncertainty The target measurement uncertainty affects the degree
of approximation that is appropriate, and will also affect the number of corrections,
etc. taken into consideration (see JCGM 200, 2.34).

Simplicity It may be important to provide a model that can be implemented with minimal
effort. Simpler representations can also help to avoid mistakes in implementation.
The use of sub-models (see 8.4) can be useful in this respect. See 9.2.

Measurement range The model should be applicable over the whole range of values of
the input and output quantities over which it is intended to be used. See 5.8. It may
be appropriate to divide the range into subranges in each of which a different model
applies. See the example in 7.2.2. Also see clause 12.

Dominant sources of uncertainty Where the dominant uncertainties arise from measure-
ment of input quantities, models that associate uncertainties with input quantities
are most appropriate. Where the dominant uncertainties relate to unpredictable or
random variation in observations, models incorporating performance data are usu-
ally more appropriate. See annex C.5.

Relevance A model that generates coefficient or parameter values that can be interpreted
in terms of physical quantities can be easier for users to apply than a model that for
mathematical simplicity uses abstract functions of physical quantities.

Parsimony If a statistical model is fitted to data, the model should not include more terms
than necessary. This aspect is often addressed by the statistical process of model
selection. See 11.10.

Available information The availability of comprehensive data on performance of the mea-
surement procedure can make it possible to use simplified measurement models. See
10.3 and annex C.5.

Numerical accuracy The model should be numerically as ‘well-posed’ as possible, that is,
not adversely affected by the limitations of the available computational precision.
See 8.6.

Solution stability Some models requiring numerical solution (and particularly some rep-
resentations) can lead to unstable numerical performance. Models that lead to stable
solutions are preferred. See 8.6.
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Computational cost Models that are easier to evaluate or solve with adequate accuracy
(see 13.3 and 13.4) are often preferred to those that might require considerable
computational effort (see 13.5 and 13.6).

8.1.3 The aspects listed in 8.1.2 are often mutually incompatible. For instance, the sim-
plest model is rarely the most accurate, and the most tractable mathematical form may
not be easy to interpret. Choice of model is therefore a balance depending on local priori-
ties. The overriding concern is whether the model is capable of providing a valid estimate
together with an associated measurement uncertainty. When a target measurement un-
certainty is available, the model should be capable of providing results consistent with
it.

8.1.4 Consideration should be given to choosing the most appropriate form of model, as
different models may be appropriate for different purposes. Example 1 in this subclause
is concerned with two models, the choice of which is made on the basis of providing data
for different physical properties. Example 2 illustrates the advisability of using an implicit
model when it provides a more natural description of the measurement. It also emphasizes
that both algebraically and numerically an implicit model might have advantages over an
explicit model. The example on shell thickness of microscopic spherical particles in 13.5
demonstrates a case in which it is not possible to transform an implicit model into an
explicit model. Such a situation is common.

EXAMPLE 1 Saturated vapour pressure (also see 7.3.1)

The dependence of vapour pressure p at saturation on thermodynamic temperature T is often
used as the basis for determining and predicting the volumetric properties of fluids. A differential
equation, the Clausius-Clapeyron equation (6) defines the first derivative dp/dT of the saturated
vapour pressure curve. A solution to this equation is the Antoine equation [7], a measurement
model that takes the form

ln
p
p0
= A−

B
T + C

, (8)

where p0 is a reference pressure and A, B and C are coefficients, usually obtained by least-squares
adjustment of vapour pressure data.

A different solution of the Clausius-Clapeyron equation, the Clarke and Glew equation [34], gives
an alternative measurement model that relates vapour pressure data to thermodynamic functions:

R ln
p
p0
= −
∆G0(Θ)
Θ

+∆H0(Θ)
�

1
Θ
−

1
T

�

+∆C0
p

�

Θ
T
− 1− ln

Θ
T

�

, (9)

where R is the gas constant, Θ denotes a reference temperature, ∆G0(Θ) and ∆H0(Θ) are the
molar free enthalpy and molar enthalpy differences between the vapour and the liquid phases at
the temperature Θ, and ∆C0

p is the difference in molar heat capacity between the two phases.

Whereas measurement model (8), within a stated temperature range, conveniently reproduces ex-
perimental data within experimental uncertainty and interpolates vapour pressure data adequately,
measurement model (9) is preferred when deriving thermodynamic properties from such data.

EXAMPLE 2 Pressure generated by a pressure balance (also see example 2 in 7.2.1)

Expression (3) in example 2 in 7.2.1 is a measurement model that defines implicitly the pressure p
generated by a pressure balance. This model may equivalently be expressed as a quadratic equation

ap2 + bp+ c = 0 (10)
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in p, where

a = A0λ[1+α(T − Tref)], b = A0[1+α(T − Tref)], c = −m
�

1−
ρa

ρm

�

g,

with solution in the form of the explicit model

p =
p

b2 − 4ac − b
2a

. (11)

Expression (11) is one of the two roots (−b ±
p

b2 − 4ac)/(2a) of equation (10), and is positive
since a is positive and the term 4ac is negative. The other root is negative, carrying no physical
meaning. Also see example 4 in 8.6.5.
In some situations it might be necessary to use the measurement model

p =
m
�

1−
ρa

ρm

�

g

A0 (1+λp+ γp2) [1+α (T − Tref)]
,

that is, with a polynomial of degree two (or higher) replacing the term 1 + λp in measurement
model (3).
Consequently, the output quantity p corresponds to a root of a polynomial equation of degree at
least 3, and it becomes more difficult (or impossible for degrees > 4) to derive an explicit measure-
ment model for p in this case. Also see reference [40].
To an approximation that may be sufficient for the case in hand, p on the right-hand side of expres-
sion (3) can be replaced by a nominal value [113], and the measurement treated as explicit (see
13.3).
More complete measurement models can also be considered [113] that include, for instance, a
correction to account for surface tension effects.

8.1.5 In calibration the relationship between the response variable and the stimulus vari-
able can often be modelled using a polynomial of modest degree, often a straight line (poly-
nomial of degree 1). Guidance on using a particular representation of polynomials (also
see annex D), which assists in determining an appropriate polynomial degree, is available
in ISO/TS 28038:2018 [99] and [37]. Also see example 2 in 8.3.3.

NOTE For many fields, specific guidance documents or international standards exist, providing
advice on the selection of appropriate (polynomial) models for multipoint calibration.

8.1.6 In cases where there is more than one output quantity, the model should usually
be treated as multivariate (see 13.4 and 13.6) rather than as separate univariate models
(see 13.3 and 13.5) since knowledge is often required of covariances associated with the
estimates of the output quantities. Instances arise in subsequent modelling and uncertainty
evaluation and the determination of coverage regions (see JCGM 102:2011). Not taking
such covariances into consideration generally leads to invalid statements of uncertainty.

EXAMPLE Method of standard addition for determination of chemicals

The method of standard addition is a popular way to estimate the concentration of various chem-
icals. It relies on partitioning a sample into several aliquots, adding to them known masses of a
standard and measuring the analytical response from such spiked samples. A straight-line regres-
sion is determined from the data and the ratio of the intercept and the slope of this regression line
estimates the amount of the analyte in the analyzed sample. Often the covariance between the
intercept and the slope is neglected resulting in the uncertainty associated with the estimate from
the method of standard addition being too small [121].

Data relating to the analysis of bromide in a water sample are
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Mass fraction increment x/mgg−1 0 47.8 95.6 142.8 190.7
Instrumental response y 1.775 2.676 3.578 4.418 5.316

The measurement model for the mass fraction of bromide in the analyzed water sample is w= a/b,
where a and b are the coefficients of the straight-line regression y = a + bx . Application of ordi-
nary least squares gives estimated coefficients ba = 1.786 and bb = 0.01852 gmg−1 with associated
standard uncertainties and covariance

u(ba) = 0.0124, u(bb) = 0.000106 gmg−1, u(ba,bb) = −1.08× 10−6 g mg−1.

Alternatively, the correlation coefficient r(ba,bb) = u(ba,bb)]/[u(ba)u(bb)] = −0.817 can be reported. If
the coefficients of the straight-line regression are treated as the output quantities obtained indepen-
dently from two univariate models, the estimate of w is bw = 96.4mg g−1 with associated standard
uncertainty u(bw) = 0.9mg g−1 given by the law of propagation of uncertainty. If, however, the
correlation between a and b is (correctly) taken into consideration, the standard uncertainty is
appreciably larger: u(bw) = 1.2mg g−1.

It is important to note that in this instance the data cannot be “mean-centred” (that is shifted with
respect to x such that the arithmetic mean of the shifted x-values is zero), with a resulting zero
correlation, before fitting the straight line. Doing so would yield a value ba different from that
required.

8.2 Fitness for purpose and approximations

8.2.1 Ideally, a basic measurement model should describe a scientific law or relation
known to hold for the true values of the input quantities and the output quantities. In
practice, the measurement model usually represents only a practicable, fit-for-purpose ap-
proximation of the ideal relationship. This is so because, although that relationship may
be known, it may be too complicated or inconvenient for practical use. Alternatively, the
relationship may be unknown, but an empirical approximation to it may be sufficient for
the intended purpose. In some instances, it may be possible to use a close approximation
to the ideal relationship on a small number of occasions, and also work with a somewhat
inferior model that would be more practical for routine use.

8.2.2 It is generally inadvisable to select a model purely for convenience, for example,
because it results in a simpler analysis or software is available for its implementation. In
exceptional cases, it is accepted that analysis can be difficult, or software is unavailable or
hard to develop. In such a circumstance, where a simpler model is used, there will be an
uncertainty associated with the estimate of the measurand resulting from that use, which
should be determined to the extent possible, and a corresponding term included in the
measurement model. See 11.10 concerned with model uncertainty.

8.3 Representation and transformation of models

8.3.1 Parametrization

Parametrization is the process of representing or expressing a measurement model,
whether theoretical or empirical, in terms of its quantities or parameters. For some mod-
els (especially theoretical models) it is important to retain the contextual meaning of the
parameters. Some parametrizations can be more convenient operationally, some more in
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accordance with working practices and some more reliable numerically (see 8.6). Trans-
formations of the parameters in a measurement model, or re-parametrizations, are fre-
quently applied in metrology to re-express a measurement result in an alternative form for
purposes of communication or to yield a simpler (or numerically more stable) computa-
tion. In the latter case, the results of the computation are transformed back to the original
formulation. Great care should be taken when establishing and propagating uncertainties
following transformation (see 8.3.6).

EXAMPLE 1 Straight line in terms of Cartesian (x , y) co-ordinates

A straight line can be represented in Cartesian co-ordinates as

y = a+ bx , (12)

with parameters a and b, where a is the intercept on the y-axis and b is the slope. This parametriza-
tion is appropriate when describing functional relationships between quantities.

EXAMPLE 2 Straight line in terms of polar (r,θ) co-ordinates

The same line can also be represented as

x sinθ + y cosθ = ρ,

with parameters θ and ρ, where θ is the angle between the line and the horizontal and ρ is its
distance of nearest approach to the origin. This parametrization can be useful when modelling
geometrical problems where the line may be near-vertical, since b diverges while θ remains finite.

8.3.2 Re-parametrization

Re-parametrization of a measurement model is the use of a different set of parameters that
depend in some manner on the original parameters. For unchanged values of the input
quantities the values of the output quantities are unchanged following re-parametrization.

EXAMPLE Straight line in terms of shifted coordinates

An alternative to the line (12) makes use of shifted coordinates:

y − y0 = a0 + b(x − x0), (13)

with parameters a0 and b, where x0 and y0 are selected in some convenient way. The expression
of the line (13) as y = (y0+ a0− bx0)+ bx exposes the relationship between the original and new
parametrization. The slope parameter b is unchanged. It can sometimes be useful to work in terms
of shifted and scaled coordinates such as

xnew =
x − x0

s

for suitable choices of x0 and s.

8.3.3 Use in regression

Suppose x i , yi , i = 1, . . . , m, represent measured coordinates of some underlying straight-
line relationship. The use of representation (13) is often more desirable than the use of
(12) since adverse numerical effects in the calculation can be more readily avoided.
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EXAMPLE 1 Drifting resistance standard (also see 10.6.4)

The straight-line regression line in 10.6.4 is based on the shifted and scaled quantity

y =
R− Rnom

Rnom

rather than the original quantity R. The values yi of y (given in table 5 in 10.6.4) range
from 17.900 8 to 18.691 6, whereas the corresponding values Ri of R range from 200.003 580 to
200.003738. The former with dynamic range 1.04 (the ratio of the range endpoint values) are
considerably more manageable than the latter (dynamic range 1.000000 8).

EXAMPLE 2 Thermoelectric voltage

This example illustrates a circumstance in which the Chebyshev representation [37] of a polyno-
mial function confers considerable advantages over the often-used monomial representation. The
monomial and Chebyshev representations (annex D) of thermoelectric voltage are, respectively,

E =
n
∑

r=0

crϑ
r , E =

n
∑

r=0

ar Tr(t), (14)

in the reference function for Type S thermocouples, for Celsius temperatures ϑ in the interval
[−50 °C, 1 064.18 °C]. The first of these expressions is given in [83] and the second is a re-
parametrization of the first. The variable t in the right-hand expression (14) is given by

t =
2ϑ− ϑmin − ϑmax

ϑmax − ϑmin
(15)

and Tr(t) denotes the Chebyshev polynomial of degree r in t (see annex D). There is a factor
of some 1021 between the estimated non-zero coefficients bcr of largest and smallest magnitude
in the monomial form, which are held to 12 significant decimal digits (12S): presumably it was
considered that care is needed in working with this particular representation. The bcr are given to
5S in column 2 of table 1.

Table 1: Estimated polynomial coefficients for a Type S thermocouple

r Raw, bcr/mV °C−r Scaled, bdr Normalized, bbr Chebyshev, bar

0 0 0 4.303 6 4.6391
1 5.403 1× 10−3 5.7499 5.527 8 5.371 1
2 1.259 3× 10−5 14.261 8 0.478 4 0.370 6
3 −2.324 8× 10−8 −28.017 4 −0.054 3 −0.0729
4 3.220 3× 10−11 41.300 5 0.220 6 0.037 1
5 −3.314 7× 10−14 −45.239 0 −0.163 7 −0.0130
6 2.557 4× 10−17 37.144 7 0.021 6 0.002 2
7 −1.250 7× 10−20 −19.331 0 −0.024 9 −0.0004
8 2.714 4× 10−24 4.4648 0.025 2 0.000 2

A scaled variable q = ϑ/B has been used in ITS-90 in recent years, where in this instance B =
1064.18 °C is the upper endpoint of the interval of definition. Then, E =

∑n
r=0 drq

r , with dr = Br cr .
The scaling implies that the contribution from the rth term in the sum is bounded in magnitude by
|dr |. Values of E in mV are typically required to 3D (three decimal places). Accordingly, estimates
bdr of the coefficients dr are given in column 3 of table 1 to 4D (that is, including an extra digit) and
are much more manageable. Alternatively, the variable can be normalized to the interval [−1, 1]
using the transformation (15) with ϑmin = −50 °C and ϑmax = B. Estimates bbr of the corresponding
coefficients br are given in column 4 and estimates bar of the Chebyshev coefficients ar in column
5 of table 1, both to 4D, obtained using references [35,158].
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Figure 3 depicts the reference function (14). It curves only gently, but the non-linearity present
cannot be ignored. The estimated coefficients in the monomial representation in terms of the raw or
scaled variable in table 1 give no indication of the gently curved form in figure 3. However, in strong
contrast, for the normalized and Chebyshev forms, the dominance of the magnitudes of the first two
estimated coefficients indicate that the calibration function has an appreciable linear (straight-line)
component. The Chebyshev coefficients for degrees 7 and 8 could arguably be replaced by zero,
since to 3D they make little contribution, with the degree of the polynomial consequently reduced
from 8 to 6. Such reasoning could not be applied to the other polynomial representations.

Figure 3: Relationship between temperature and thermoelectric voltage

8.3.4 Simple transformations

Some measurement models constitute simply transformation of the quantities involved
(‘transformation of variables’).

EXAMPLE Logarithmic and linear formats

In radio-frequency and microwave electrical metrology, transformations are often made between
logarithmic and linear representations of dimensionless reflection and transmission coefficients
(scattering parameters or S-parameters). For an n-port electrical device, the expression is

α= −20 log10 |S| ,

where |S| is the modulus of a (complex-valued) linear S-parameter and α is the corresponding
logarithmic loss (that is, return loss or attenuation), measured in dB.

|S| is defined as

|S|= (x2 + y2)1/2,

where x and y are the real and imaginary components of the linear S-parameter.

In this example, measured values of x and y are bx = 0.0060 and by = 0.0080 and their stated
associated standard uncertainties are u(bx) = u(by) = 0.0100. An estimate |bS| of |S| and thence |bα|
of α are obtained:

|bS|= (bx2 + by2)1/2 = 0.0100, bα= −20 log10

�

�
bS
�

�= 40.0 dB.

These values typify the measurement of the linear reflection coefficient of a near-matched (that is,
low-reflecting) device.
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Applying the law of propagation of uncertainty (LPU) (JCGM 100:2008, 5.1.2) gives

u(|bS|) =
[bx2u2(bx) + by2u2(by)]1/2

|bS|
= 0.010 0, bu(α) =

20
ln10

u(|bS|)
|bS|

= 8.7dB. (16)

The appropriateness of formula (16) for the standard uncertainty u(|bS|) is considered by also eval-
uating this uncertainty by applying the Monte Carlo method given in JCGM 101:2008. Application
of this method with M = 108 trials, assuming x and y are independently normally distributed with
means bx and by , standard deviations u(bx) and u(by), and no correlation between x and y , gives the
entries in column 3 of table 2, which are not in close agreement with the entries in column 2.

Table 2: Data and results for a logarithmic transformation using the law of propagation of uncer-
tainty (LPU) and a Monte Carlo method (MC)

u(bx) = u(by) = 0.01 u(bx) = u(by) = 0.005
LPU MC LPU MC

|bS| 0.0100 0.0155 0.0100 0.0114
u(|bS|) 0.010 0 0.0078 0.0050 0.0046
bα/dB 40.0 37.6 40.0 39.8

u(bα)/dB 8.7 5.4 4.3 4.4

The M values of |bS| given by these trials can be used to construct a histogram, which when scaled
appropriately, as described in JCGM 101:2008, 7.5.2, would give an approximation (which would
improve as M is increased) to the probability density function (PDF) for |bS|. This PDF is asymmetric,
unlike the normal distribution assumed by the GUM. MC is expected to be more reliable in such
circumstances.

Consider now that u(bx) = u(by) = 0.005 0 (rather than 0.010 0). The results are given in columns
4 and 5 of table 2. The difference between the outcomes from LPU and JCGM 101:2008 is now
much less since the degree of approximation in the first-order Taylor expansion of the measurement
function, which underpins LPU, is better over a shorter interval. Moreover, the PDF is less skewed.

In general, it is not recommended to perform uncertainty calculations using logarithmic quantities
in, for example, dB. Logarithmic quantities should be converted to the equivalent linear format
before performing uncertainty calculations.

8.3.5 Non-linear relationships

When a plot of data representing a relationship between two variables suggests an under-
lying non-linear behaviour, it is often possible to transform the raw data to make it ‘more
linear’. Doing so allows linear regression techniques to be used more effectively with such
data. Re-parametrization in such an instance relates to the fact that the straight-line repre-
sentation of the transformed data implies a different representation from that for the raw
data. Such transformations generally change the statistical structure of the problem (see
8.3.6).

8.3.6 Impact on uncertainties

For uncertainty propagation, not all algebraically equivalent models behave necessarily
in the same way because they are not equivalent statistically. An algebraic transforma-
tion should be accompanied by a corresponding statistical transformation to ensure the
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integrity of the results obtained. The use of the law of propagation of uncertainty (JCGM
100:2008, 5.1.2) for this purpose is inadequate in some situations. Since the law of propa-
gation of uncertainty is based on a linearization of the model, if errors originally followed
a certain distribution, in the transformed problem they would generally follow a differ-
ent distribution. Transformations have an impact on the uncertainties associated with the
estimates of the quantities involved or on the weights in a statistical regression analysis
involving such a model. See the example in 8.3.4.

NOTE Transformations also have an impact on the probability distributions used to characterize
the quantities involved [129].

EXAMPLE Re-parametrization of a model for lead adsorption by nano-particles

The Langmuir adsorption model [111] describes the theoretical relation between the amount con-
centration Γ of a solute on the surface of an adsorbent to the amount concentration c of the solute
in the liquid with which it is in contact:

Γ = Γmax
Kc

1+ Kc
, (17)

where K is the Langmuir binding-strength coefficient and Γmax (the measurand) is the maximum
sorption capacity of the adsorbent. A reparametrized form of the Langmuir model is often used
based on taking the reciprocal of both sides of model (17), which expresses 1/Γ as a linear function
of 1/c:

1
Γ
=

1
Γmax

+
1

ΓmaxK
×

1
c

. (18)

The model parameters 1/Γmax and 1/(ΓmaxK) can be obtained by linear regression. Although mod-
els (17) and (18) are mathematically equivalent, different results are obtained for Γmax.

Consider measured values of c equal to

0.20 mmolL−1, 0.25 mmolL−1, 0.33 mmolL−1, 0.60 mmolL−1, 2.00mmol L−1,

and corresponding measured values of Γ equal to

9.4 mmolg−1, 11.1mmolg−1, 13.9 mmolg−1, 20.0mmol g−1, 33.3 mmolg−1.

Assuming c and Γ are independent, and not accounting for measurement uncertainties associated
with Γ and c in order to illustrate the point, bΓmax = 46.4 mmolg−1 with associated standard uncer-
tainty u(bΓmax) = 0.3 mmolg−1 is obtained by non-linear least-squares regression using expression
(17).

Ordinary least-squares (OLS) fitting using expression (18) gives 1/bΓmax = 0.0214 g mmol−1 with
associated standard uncertainty u(1/bΓmax) = 0.0006 g mmol−1, which following reciprocation cor-
responds to bΓmax = 46.7 mmolg−1 with associated standard uncertainty u(bΓmax) = 1.4 mmolg−1.

Several other linearized versions of model (17) exist; it is emphasized that re-parametrization can
have a significant effect on the results if the transformed uncertainties are obtained using the law
of propagation of uncertainty, which assumes sufficiently accurate linearizability. Although both
models are algebraically equivalent, OLS treatment of these models differs in its assumptions. The
OLS treatment of (17) implies normality in the dispersion of Γ values whereas OLS treatment of
(18) implies normality in the dispersion of 1/Γ values. These assumptions are inconsistent.

Although the values of bΓmax obtained by the two methods are consistent with respect to their asso-
ciated standard uncertainties, this may not be the case in other circumstances.

© JCGM 2020 – All rights reserved



22 JCGM GUM-6:2020

8.3.7 Explicit and implicit forms of measurement model

When it is possible to transform an implicit expression to an explicit expression, there can
be a preferred choice that depends on the particular circumstances. Sometimes an implicit
form is preferable because it can have better numerical behaviour even when an explicit
form can be deduced from it.

EXAMPLE Representation of a circle

In the assessment of geometric form in dimensional metrology [6] the equation for the co-ordinates
(x , y) of a point on a circle centred at (a, b) with radius r is written implicitly as expression (x −
a)2 + (y − b)2 = r2. Then, y expressed explicitly in terms of the other quantities is given by
expression y = b ± [r2 − (x − a)2]1/2. Because of subtractive cancellation the use of the latter
expression becomes problematic when |x − a| ≈ r. Alternatively, a convenient way to represent a
circle is through the use of a parameter θ :

x = a+ r cosθ , y = b+ r sinθ ,

which is appropriate and numerically stable for values of θ between 0 and 2π and all co-ordinates
(x , y).

8.4 Multi-stage measurement models

8.4.1 In many stepwise processes in metrology, quantities from intermediate measure-
ments are naturally used in a subsequent measurement. Each stage in the process can be
described by a measurement model with input quantities and output quantities. This set
of measurement models constitutes a multi-stage measurement model and can be used as
such. Equivalently, the complete process can sometimes conveniently be described by a
single-stage measurement model, perhaps involving a different number of quantities.

8.4.2 Multi-stage models also arise as a natural consequence of the dissemination chain
connecting ideally all kinds of measurements to the relevant SI units. Sometimes, to eval-
uate correctly the uncertainty associated with an estimate of the output quantities at a
given stage, it is necessary to consider the previous stages in connection with the current
stage. By implication, it can be necessary to consider the corresponding measurement
models as a single multi-stage measurement model. An instance arises in mass and force
measurements, in which covariances between volume and mass at the various stages of
the dissemination chain must be taken into account to evaluate correctly the contribution
of the buoyancy correction to the uncertainty associated with the output estimate of the
current calibration [118].

EXAMPLE 1 How long is a piece of string?

Consider the problem of establishing a model for the measurement of the length L of a piece of
string using a steel tape. Inevitably, idealizations and approximations are necessary. A simpler
treatment involving fewer factors is available [15]. The measurand is the length L. It depends
on several input quantities representing the observed string length and corrections to that length.
Most of these quantities are expressed in terms of other quantities. The measurement model takes
the form
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String length = Observed string length (A)
+ Steel tape length correction (B)
+ String length correction (C)
+ Measurement process correction (D),

where

(A) Observed string length = Average of a number of repeated observations
(Q11)

(B) Steel tape length correction =
�

Length deviation due to tape calibration imper-
fections (Q21)

+ Extension in tape due to stretching (this correc-
tion is negative if there is shrinking rather than
stretching) (Q22)

+ Reduction in effective length of tape due to
bending of the tape (Q23)

�

× Multiplicative correction for steel tape thermal
expansion (Q24)

(C) String length correction = Reduction in effective string length due to string
departing from a straight line (Q31)

+ Reduction in string length as a result of shrink-
ing (negative if there is stretching rather than
shrinking) (Q32)

(D) Measurement process correction = Length deviation due to inability to align end
of tape with end of string due to fraying of the
string ends (Q41)

+ Length deviation due to tape and string not be-
ing parallel (Q42)

+ Length deviation due to reading a numerical
value from the tape (Q43).

The measurement model is thus expressed symbolically as

L =Q11 + (Q21 +Q22 +Q23)Q24 + (Q31 +Q32) + (Q41 +Q42 +Q43).

Each input quantity Q i j would have an estimate and associated standard uncertainty, or be char-
acterized by an appropriate probability distribution depending on the knowledge available. In the
latter case, for instance, (a) a scaled and shifted t distribution is used for the quantity Q11 cor-
responding to the observed string length, based on repeated observations (see JCGM 101:2008,
6.4.9), and (b) a distribution based on a circular-arc model is used for the quantity Q23. This
example is continued in example 1 in 10.4.3.

The distribution for Q23 is related to the chi-squared distribution and does not have zero expec-
tation, since the minimum effect of tape bending on the output quantity is zero. This degree of
sophistication would not be warranted when measuring the length of a piece of string, but relevant
in some other applications.

This example can be interpreted as a multi-stage model with the quantities representing the steel-
tape-length correction, string-length correction and measurement-process correction described by
sub-models.

EXAMPLE 2 Peak area determined from spectral data

A requirement in spectroscopy is the detection of peaks in a signal and the determination of peak
parameters such as area and location. The effects of noise in the signal are reduced by first smooth-
ing the data. Peak area can be considered in terms of a two-stage model or a single-stage model.

Two-stage model In a first stage data, with associated standard uncertainties, are filtered using a
windowing function, of rectangular or triangular form, for instance. The result of the filtering
is a set of smoothed values, with associated standard uncertainties and covariances. At least
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some of these covariances are non-zero, since the filtered data depend on the original data.
This stage involves an explicit multivariate model (see 13.4).
In a second stage a linear function of the filtered data is obtained such as peak area. To eval-
uate the standard uncertainty associated with peak area, explicit use is made of the standard
uncertainties and covariances associated with the filtered data established in the first stage.
This stage involves an explicit univariate model (see 13.3).

Single-stage model In a single-stage model, peak area is expressed directly as a function of the
unfiltered data by combining explicitly the above two stages. As a consequence, the covari-
ances generated in the above first stage require no consideration. This single-stage model is
univariate and explicit (see 13.3).

The mathematics of these two approaches is as follows:

Two-stage model In the first stage data y representing a spectral signal are filtered using a win-
dowing function. The result of the filtering is a vector z = C y , where C is a matrix depending
on the windowing function. If the covariance matrix associated with y is U y , the covariance
matrix associated with z is U z = CU yC> (see JCGM 102:2011, 6.2.1.3). In the second stage
a linear function p = w>z of the filtered data z is obtained such as peak area. The variance
associated with p is u2(p) = w>U z w .

Single-stage model The two stages when combined into a single stage become p = w>C y and
u2(p) = w>CU yC>w . The covariance matrix U z is not involved in the combined calculation.

The signal is often superimposed on a background that is estimated by a constant, inclined or
curved baseline and subtracted from the original signal before peak processing. This subtraction
introduces further correlation.

8.4.3 Calibration (see 11.4) is an important instance of a multi-stage model, where the
determination of a calibration function is followed by its use. Subdivision into stages is nec-
essary when one laboratory determines a calibration function and another uses it. When
there are several calibration parameters (calibration coefficients, say), the parameter co-
variances as well as their standard uncertainties have to be made available to the next
stage. Combining stages, when that is possible, avoids the need to work with these co-
variances. An instance is example 2 in 8.4.2 in which many covariances would be passed
from the first stage to the second. A further instance is the example in 8.1.6. Sometimes
a change of variables can give an alternative representation of a model, which avoids the
use of covariances; see, for instance JCGM 100:2008, annex H.3.

8.5 Uncertainty associated with choice of model

The choice of measurement model should be examined if it is considered it will have an
effect on the estimate of the measurand that is significant compared with the uncertainty
associated with that estimate. For some classes of model, such as those that naturally
include terms the number of which depends on the available data as in polynomial cali-
bration, guidance is available on choosing a model [99]. See 11.10 for model uncertainty
in the context of statistical models. Often, simply an awareness of the issue and its possible
repercussions is the main consideration. Also see 8.2.2.

8.6 Loss of numerical accuracy and its compensation

8.6.1 Inaccuracy can occur in numerical computation as a result of using formulæ or
algorithms which, although mathematically correct, are not suitable for the task in hand.
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Such inaccuracy can arise in many areas such as calculating basic statistics (for instance,
mean and standard deviation of a set of data), fitting polynomials to data and simply
evaluating a formula. Specific causes of such behaviour include numerical errors due to
loss of significant digits arising from subtractive cancellation, build up of rounding error,
and computer underflow or overflow.

8.6.2 The need to evaluate measurement functions given as formulæ is widespread in
metrology. Formulæ are provided in papers, reports, data sheets, procedures, specifica-
tions, guides and documentary standards, and elsewhere. They are used to express both
theoretical and empirical relationships between quantities. Metrologists arguably have
the right to expect that a formula provided in a reputable source is fit for the purpose for
which it was developed. In other words, the formula can be directly evaluated manually
or implemented on a computer with confidence. It is not always the case that a faithful
implementation of a given formula yields a result with the numerical accuracy that might
be expected, especially compared with the use of alternative mathematically equivalent
formulæ. In some instances the loss of numerical accuracy may not be acceptable.

8.6.3 Since a computer will be used for most calculations of the type considered in this
guide, computations will naturally be carried out using all digits available (typically about
16 decimal digits in a computer wordlength). This number of digits is usually more than
adequate for providing measurement results to the numerical accuracy required in practice.
Certain formulæ or algorithms, however, are such that the computed measurement results
might not have sufficient numerical accuracy due to such causes as in 8.6.1. A reasonable
choice of parametrization can help to avoid such a possibility.

8.6.4 If the measurement results are to be used in a further calculation, sufficient nu-
merical accuracy should be retained in the values to be passed to that calculation. In
accordance with 8.6.3, whenever possible calculations should proceed with the numeri-
cal values represented on the computer rather than the rounded values that may be used
for reporting purposes. A common occurrence is when a calibration function is used in
a first step to obtain calibration coefficient estimates, uncertainties and covariances, and,
in a second step, this information is used to provide stimulus values and associated un-
certainties corresponding to given response values and associated uncertainties. The use
of rounded values from the first step may provide insufficient numerical accuracy in the
required stimulus values and in the associated uncertainties.

8.6.5 Compensation can often be made for loss of numerical accuracy, especially if it is
anticipated that the computed results might be adversely affected. Rearranging, simpli-
fying or re-parametrizing a mathematical expression can in some instances improve sub-
stantially the numerical accuracy of the evaluated result. Although it is beyond the scope
of this guide to give extensive advice (that is the province of numerical analysis [162]),
the examples below are indicative of numerical difficulties that can arise and the manner
in which they can be overcome. The use of good quality mathematical software libraries
is recommended.
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EXAMPLE 1 Subtractive cancellation in calculating mean and standard deviation

For a set of values x i , i = 1, . . . , n, which may be repeated observations, obtained independently,
of some quantity, formulæ for their mean x̄ and variance (squared standard deviation) s2 are

x̄ =
1
n

n
∑

i=1

x i , s2 =
1

n− 1

n
∑

i=1

(x i − x̄)2. (19)

These formulæ are numerically stable. An alternative, mathematically equivalent formula is

s2 =
1

n− 1

�

n
∑

i=1

x2
i − nx̄2

�

, (20)

a formula that should not be used for high-precision metrological data since it is potentially nu-
merically unstable [39]. For data having r leading decimal digits in common, typically 2r decimal
digits are lost by applying equation (20).

Mass data, in grams, obtained under repeatability conditions of measurement using a comparison
method [17] are

1 000.000712 2 1000.000 7123 1000.000 7126 1 000.000712 7
1 000.000712 8 1000.000 7128 1000.000 7129

s2 given by formula (19) is 7.1× 10−14 g2 and that given by formula (20) is 3.1× 10−10 g2, us-
ing 16 significant decimal digits in calculations [84]. These values differ by some four orders of
magnitude. The corresponding values of s are 0.27 µg and 18 µg. The latter value is clearly in-
correct since the data values on which s is based differ from each other by less than 1 µg. The
reason for this failure is that catastrophic subtractive cancellation takes place in formula (20) due
to minute numerical rounding errors: the two contributory terms in parentheses in formula (20)
are respectively 7.000 009976 603555× 106 g2 and 7.000 009976 603553× 106 g2, differing by 2
in the 15th significant decimal place.

A second instance of mass measurement data, again in grams, is
1 000.000094 8 1000.000 0950 1000.000 0950 1 000.000095 0
1 000.000095 0 1000.000 0951 1000.000 0950

For this data, formula (19) gives s2 = 8.1× 10−15 g2 and formula (20) gives−3.1× 10−10 g2. Again,
catastrophic subtractive cancellation takes place in formula (20), so much so that the variance is
computed as negative, an impossible value. The two contributory terms in parentheses in formula
(20) are 7.000001 329800 062× 106 g2 and 7.000001 329800 064× 106 g2, respectively, which
differ by −2 in the 15th significant decimal place.

As both sets of data have some 9 leading decimal digits in common, about 18 digits would be
expected to be lost by unstable formula (20). Since about 16 decimal digits are available, no
correct digit in the computed s2, and hence s, can be anticipated.

Consider n, the number of values of x i , to be very large, 106 or 107, say, as arises, for instance, in a
Monte Carlo implementation of the propagation of distributions (see JCGM 101:2008). The direct
use of formulæ (19) not only requires all the x i to be available, but also necessitates two passes
through the data, first to calculate x̄ and then s2. Incremental, ‘one-pass’, forms of expressions (19)
are available [76, chapter 4]. They provide numerical accuracy comparable to that for expressions
(19), but use minimal memory.

EXAMPLE 2 Inadequate form of polynomial for evaluation purposes

Consider the evaluation of a particular polynomial p(x) of degree six [146, p125] in the region
of a minimum of p. The function is convex, with essentially flat behaviour in the middle of the
interval. Figure 4 shows p evaluated at 101 equispaced x-values in the interval [0.99,1.01] with
successive points joined by straight lines. The behaviour is highly erratic, and nothing like the
smooth behaviour expected of a polynomial of modest degree. The irregularities correspond to
large relative numerical errors in the computed values of the polynomial.

The polynomial in monomial form is

p(x) = 1− 6x + 15x2 − 20x3 + 15x4 − 6x5 + x6, (21)
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Figure 4: Polynomial evaluated using a numerically stable formula and (irregular curve) an unsta-
ble formula with successive evaluation points joined by straight lines

which was the form that was evaluated in creating the ‘jagged’ line. The evaluation of the form
(21) near x = 1 suffers appreciable subtractive cancellation: individual terms in the polynomial
(for instance, 15x2 and −20x3) have magnitudes of between 1 and 20 near x = 1, yet the value of
p is very much smaller, for instance, of the order of 10−13 at x = 0.99. So many (some 14) digits
are lost for this value of x .

The polynomial p(x) is in fact the expansion of (1− x)6, a form that is perfectly suitable for direct
evaluation. The smooth curve in figure 4 was formed using this representation.

Imagine using the form (21) for the determination of a root of p(x) = 0, as would be required when
working with an implicit model. The graph shows many spurious ‘zeros’ (the points of intersection
of the irregular curve and the horizontal line) induced by the noisy function values. More strictly,
there are many pairs of adjacent points when the computed value of the function takes opposite
signs.

A similar situation would arise when determining the minimum of p. The noise induced into the val-
ues of the function by the use of representation (21) would cause a poor estimate of the minimum
to be returned. Indeed, there are many local minima. It would also be likely to introduce diffi-
culties for the minimization routine, which is probably designed to operate effectively for smooth
continuously differentiable functions. This function has all these properties mathematically, but
not numerically in the field of floating-point arithmetic.

EXAMPLE 3 Underflow and overflow in the evaluation of the geometric mean

The geometric mean x [38] of n positive values x1, . . . , xn is required. For each x i approximately
equal to 0.5 and n= 2000, the geometric mean obtained using the ‘natural’ formula x = (x1×· · ·×
xn)1/n is computed as zero in IEEE arithmetic [84], as implemented on most computers, because
of underflow. The correct result is approximately 0.5. The difficulty can be overcome by forming
(1/n)

∑n
i=1 ln x i and exponentiating the result. If, on the other hand, each x i is now greater than

unity, approximately 2, say, and n = 2 000, say, the ‘natural’ calculation will overflow, but the
modification will provide a reliable value.

EXAMPLE 4 Roots of a quadratic equation

The textbook formula for the roots of a quadratic equation is not always numerically ideal. Con-
sider example 2 in 8.1.4. For certain values of a, b and c (for instance, given by T ≈ Tref, ρa� ρm,
λ� mg), a value of p obtained from expression (11) may be numerically inaccurate, as a result
of subtractive cancellation, and thus not be fit for purpose. A recommended approach to form-
ing the output estimates given input estimates is as follows. Let the two roots of the quadratic
equation (10) be z1 and z2 with |z1| ≥ |z2|. Then, since the coefficients a and b in this equation
are positive for this application, z1 and z2 are evaluated (without subtractive cancellation) from
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z1 = (−b−
p

b2 − 4ac)/(2a) and z2 = c/(z1a), using a property for the product of the roots of a
quadratic equation.

9 Identifying effects arising from the measurement

9.1 The basic model describing the measurement principle [step b) in 5.3] holds in ideal
conditions. That model should usually be extended to cover effects arising in the practical
implementation of the measurement. These effects should be identified and considered
for inclusion in the model to obtain a measurement model adequate for the purpose [steps
c) and d) in 5.3].

EXAMPLE Local acceleration due to gravity

The local acceleration due to gravity g (the measurand) is determined in absolute gravimeters by
a free-fall experiment in which a body initially at rest falls a distance h under the effect of gravity.
The measurement principle is based on the model h = g t2/2 or, equivalently, g = 2h/t2, where
t is the time for the fall. This model is approximate, strictly holding only in a vacuum. In real-
ity, an additive correction needs to be introduced in the model to accommodate the fact that air
friction alters the law of motion of the body. The correction is proportional to the air density, the
cross-sectional area of the body and the square of its velocity. These quantities, be they determined
experimentally or estimated by other means, are themselves uncertain. Their uncertainties con-
tribute to the uncertainty associated with the correction and in turn to the uncertainty associated
with the measurand. Also, since the model is approximate in that g is not strictly constant over the
distance h, a more elaborate model may be constructed to account for that effect.

9.2 Effects arising from the measurement (see 9.3) are generally accounted for in the
measurement model depending on the available knowledge about them. Subclauses 9.3
and 9.5 and clause 10 provide guidance on extending the measurement model accordingly.

9.3 The identification of the effects arising in the practical implementation of the mea-
surement is one of the most demanding tasks in the construction of a fit-for-purpose model.
Areas of consideration include, but are not limited to, contributions from the following ef-
fects (compare reference [15]):

— realization of the specification of the measurand,
— approximations and assumptions in modelling the measurement,
— conditions of measurement,
— external influences (including environmental effects),
— drift of the measuring system,
— measurement standards and certified reference materials,
— artefacts, objects or materials to which the measurement result is applicable,
— instability or inhomogeneity of the artefact or material subject to measurement,
— sampling,
— sample preparation,
— calibration,
— reading analogue and digital measuring systems,
— system resolution or discrimination threshold,
— zeroing of an instrument, and
— variations in and correlations between observations.
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NOTE 1 The effects are not necessarily independent.

NOTE 2 It is often more practicable to assess and include in the model combinations of these
effects, rather than each effect separately.

9.4 During the execution of a measurement procedure, many factors need to be kept
within specified limits. In principle, all these factors should be included in the measure-
ment model.

9.5 Identifying influences on a measurement can be facilitated by the use of a cause-
and-effect diagram, also known as an Ishikawa or ‘fishbone’ diagram [61–63]. A brief
description of cause-and-effect diagrams and their use for measurement modelling is given
in Annex E.

10 Extending the basic model

10.1 General

10.1.1 There are various ways of extending the basic model to account for the effects
identified in 9.3. The purpose of elaborating the basic model is to complement it to be-
come a measurement model that includes all quantities and effects that influence the mea-
surement result. Two important choices should be made when including an effect in the
model:

a) whether to model the effect as an effect on the observed values of an input quantity
in the basic model, or as an effect on the observed values of the output quantity, and

b) whether the effect can be described sufficiently well that a correction can be made
for it.

10.1.2 The effects arising from the measurement can often be described as an effect on
one or more input quantities. Consequently, it is appropriate to model such effects in re-
lation to the input quantities being affected. Another frequently occurring situation arises
when an effect cannot be easily described as an effect on an input quantity. Such effects
should be incorporated in the measurement model as an effect on the output quantity. Such
situations arise in all kinds of product and material testing, and also in the production of
reference materials when evaluating batch homogeneity or stability [97]. This modelling
choice is further elaborated in 10.2.

10.1.3 In considering whether an effect can be described sufficiently well to allow cor-
rection, two broad classes can usefully be distinguished:

Well-understood effects Many effects can usefully be measured or estimated with suffi-
ciently small uncertainty to improve the measurement. Others may be known to
have small uncertainties compared with the target measurement uncertainty. These
well-known or readily measurable systematic effects will be considered here as ‘well-
understood effects’.
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Poorly understood effects Other effects are known to exist, but little can be said about
their magnitude or even their sign in a particular measurement. These include ran-
dom effects, which generally give rise to a different deviation for every instance of a
particular random effect. Similarly, some systematic effects cannot readily be mea-
sured or characterized sufficiently for correction in a particular measurement, for
example, because they depend heavily on unknown characteristics of each different
test item. It is not possible to make a useful correction for either of these effects.
They can, however, contribute perhaps appreciably to the measurement uncertainty.
These will be considered as ‘poorly understood effects’.

Subclauses (10.3 and 10.4) give guidance on extending a basic measurement model to
include these two broad types of effect.

NOTE The classification above is for convenience in discussion. Because it relies on the degree to
which a particular effect is understood in a specific case, an effect that is ‘poorly understood’ in one
circumstance can, for example, because of more extensive study of the measurement, be modelled
as a ‘well-understood’ effect in different circumstances.

10.2 Adding effects to the basic model

10.2.1 An input quantity can often be described as a function of several other input
quantities, as demonstrated in the following example.

NOTE This form of modelling is also known as a ‘bottom-up’ approach to uncertainty evaluation
[3].

EXAMPLE Mass concentration computed from preparation data

Suppose the mass concentration of substance in a solution is calculated from the mass m of the
substance and the volume V of the solution. As is common in analytical chemistry, a balance is
used to determine m and a volumetric flask is used to determine V . The measurement model takes
the form

γ=
m
V

, (22)

where γ denotes the mass concentration. The volume of the solution is affected by the repeatability
of filling and the temperature, and largely determined by the volume of the flask Vflask. Hence,
incorporating terms δVr and δVT to represent these respective effects,

V = Vflask + δVr + δVT .

This expression can be substituted in the measurement model (22) to account for these effects.

The effect of the purity of the substance can be modelled by developing an expression for m that
incorporates a correction for purity, w. If this correction is available, then

m= mgrossw,

where mgross is the mass calculated from weighing the substance. For mgross, a measurement model
is also constructed that typically includes the readings of the balance when weighing the empty
container and when weighing the container with the substance, among others. A fully worked
example is given in the Eurachem/CITAC Guide [63, appendix A, example A1].

10.2.2 Another frequently occurring situation arises when an effect of, for example, sam-
pling, sample preparation or the measuring system, is more conveniently evaluated in
terms of the output quantity.
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NOTE This form of modelling is also known as a ‘top-down’ approach to uncertainty evaluation [3].

EXAMPLE Ash content of coal

The ash content of coal (expressed as mass fraction) is a function of temperature. However, it is
not possible to describe this relationship mathematically, due to the complexity of the chemical
reactions involved in converting the coal sample into ash. Depending on the conditions of ashing,
ash is produced with a different composition and hence a different mass.

A laboratory evaluates the temperature effect by repeating under repeatability and (within-labo-
ratory) reproducibility conditions the test on a set of laboratory samples from the same coal, over
a number of days, to assess repeatability and reproducibility. The standard deviations thus ob-
tained relate to the ash content of the coal. The temperature effect, which cannot be described
as a relationship between the ash content and the (fluctuations of the) ashing temperature, would
be incorporated in the measurement model as part of a precision term associated with the output
quantity. Whether a bias component needs to be included would usually be assessed by using a
certified reference material or retained sample from a proficiency test.

10.2.3 The mathematical form in which an effect is modelled depends primarily on
whether this effect is in magnitude constant over the range of values concerned for the
corresponding quantity, or whether some other relationship is determined. In cases where
there exists an established functional relationship, such a relationship should be used, or
a simplification of such a relationship if it can be demonstrated that it is fit for purpose.

EXAMPLE 1 Volume of a solution
The contraction or expansion of a liquid can be described as a function of the temperature by using
the cubic expansion coefficient [63]. Over large temperature ranges, this coefficient is generally
also a function of temperature, so that a different mathematical expression can be needed depend-
ing on the range of temperatures contemplated when preparing solutions.

EXAMPLE 2 Air buoyancy
Air buoyancy can be described as a function of the volume of the object being weighed and the
air density. The air density can for example be computed from the CIPM 2007 formula, which
relates the air density to pressure, temperature, relative humidity and the amount fraction of carbon
dioxide [135]. A simpler form of the correction would use a constant value for the air density, with
a suitably large uncertainty that reflects the variability of the air density the year round.

10.3 Modelling well-understood effects

10.3.1 Well-understood effects exert an influence on the estimate of the measurand whose
magnitude can be determined and for which a correction can usefully be considered. They
are included in the measurement model by introducing input quantities as corrections or
correction factors (see JCGM 200, 2.53) to compensate, respectively, for additive effects
(absolute) or multiplicative effects (proportional to the measurand). The associated un-
certainties describe the residual doubt about how well the corrections or correction factors
are known. Some input quantities might themselves be known to depend on further quan-
tities, and so the measurement model would be expressed in terms of an enlarged set of
input quantities. Equivalently, these input quantities can be regarded as output quantities
from further measurement models in a multi-stage measurement model (see 8.4).

10.3.2 In many cases the corrections or correction factors can be described by mathe-
matical expressions that represent the physical phenomena causing the effects.

© JCGM 2020 – All rights reserved



32 JCGM GUM-6:2020

EXAMPLE Buoyancy in mass measurement

If the mass measurement in the example in 7.1 is carried out in air, an additive correction due to
air buoyancy of the form ρaV is introduced, where ρa is the air density and V the volume of the
weight. The model becomes

m=
k
g

X +ρaV.

In turn, the volume is typically obtained from a known value Vref determined at a given reference
temperature tref (tref = 0 °C or tref = 20 °C), and corrected by taking into account the temperature
t at which the measurement is made and the average coefficient of thermal expansion α of the
material that constitutes the weight in the temperature range between t and tref. Therefore,

V = Vref[1+α(t − tref)].

This expression can be introduced in the model, or be considered as a sub-model in a multi-stage
measurement model (see also 8.4). Similar considerations can be applied to other input quantities.

10.3.3 If there is no known relationship between the effect and the quantity concerned,
then often the dependence is determined experimentally, for example, in method evalua-
tion or method verification studies [100]. Also, consideration should be given to the pos-
sibility that the uncertainty component arising from the effect studied is not necessarily
constant over the range of values considered for the quantity causing the effect. A well-
established experiment provides data over this range, so that it can be assessed whether
the uncertainty component is best approximated by a contribution that is independent of
or proportional to the value of the measurand or has some other relationship to the mea-
surand. In the first situation, the effect should be modelled as an additive term, whereas
in the second situation a multiplicative factor is the appropriate choice.

10.3.4 The correction corresponding to a well-understood effect should always be in-
cluded in the measurement model in the form of a mathematical expression. How to
determine the (unknown) value of the correction is a matter of choice, largely depending
on the target uncertainty. The value can be determined experimentally during the mea-
surement, or be estimated from other information, or be taken equal to zero, if additive,
or to one, if multiplicative, in which cases the correction does not impact on the estimate
of the measurand. Whichever its value, a correction in a measurement model contributes
to the uncertainty associated with the estimate of the measurand.

10.3.5 The practice of not including in the measurement model a correction having
known value and applying instead an inflated uncertainty is scientifically unsound and
is deprecated (see JCGM 100:2008, F.2.4.5).

10.3.6 The greater the effort that is devoted to evaluating a correction, the better is the
available knowledge about it, and the more reliable is the resulting associated uncertainty.
Simplifying a measurement model by neglecting corrections, or by including only a simple
approximate correction for a more complex effect, can significantly reduce the effort re-
quired to characterise a measurement and evaluate its uncertainty. On the other hand, the
additional uncertainties associated with the neglected effects or with the approximations
employed are generally larger and less reliable than if the effects were characterised and
corrected as necessary.
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EXAMPLE Mass measurement (continued)

In the example in 10.3.2, the temperature t can be measured or, based on prior knowledge about
the laboratory conditions, it can be taken as tref. Depending on the decision made, t− tref has either
a non-zero value with an uncertainty equal to that associated with the estimate of t, or is equal to
zero with a larger uncertainty depending on the known temperature fluctuations in the laboratory.
Also the air density can be measured, with state-of-the-art relative uncertainty of, say, some parts
in 105 or can be taken equal to an average value with an associated relative standard uncertainty
typically between 0.1 % and 1 %.

10.3.7 The discussion above explains an apparent paradox arising when the same type
of measurement is carried out at the highest accuracy and at the industrial level. In the
former case, a complete model is used, containing all the corrections, which are determined
experimentally. In the latter case, in which the target uncertainty is much greater, most
of the corrections are typically estimated from other information (Type B evaluation) or
simply ‘neglected’, so that the model contains just a few terms having, however, a much
larger uncertainty. As a result, for the same kind of measurement a model containing a
large number of terms yields an estimate having an uncertainty smaller than that provided
by a simpler model containing a smaller number of terms. This somehow counter-intuitive
fact is explained by the difference in the effort devoted to evaluate corrections in the two
cases.

10.3.8 There are circumstances in which an effect known to affect the measurement
result can be represented only as a correction (or correction factor) that cannot be de-
termined experimentally during the measurement. An estimate of the correction and the
associated uncertainty are instead obtained from prior knowledge generated, for example,
by method evaluation or method verification studies [100,117]. In some cases, where the
measurement is carried out for different values of a quantity such as concentration, the
estimated correction and the associated uncertainty may depend on the particular value
of the quantity.

EXAMPLE Recovery in chemical measurement

In chemistry the component of interest (the analyte) is often embedded in a complex mixture of
other molecules (the matrix). Many methods of analysis to determine the concentration (the mea-
surand) of the analyte require the analyte to be separated from the matrix. The quantity actually
measured is the concentration of the analyte following removal. A systematic error arises if the
measured value is obtained using a measurement model that ignores the effect of incomplete re-
moval [52]. Correction for incomplete removal is usually described by a multiplicative recovery
factor, which is estimated in an experiment where a reference material, having a known concen-
tration of the analyte in the matrix, is measured. The recovery factor is included in a measurement
model for the concentration of the analyte, and account is taken of the uncertainty associated with
the estimate of the factor, which includes the uncertainty associated with the value carried by the
reference material.

10.4 Modelling poorly understood effects

10.4.1 Poorly understood effects, in contrast with the well-understood effects considered
in 10.3, are known to exist, but little can be said in a specific measurement about their
magnitude or even their sign. Although a correction cannot usefully be made for these
effects, it is important to include them in the measurement model because they contribute
to the uncertainty associated with the estimate of the measurand.
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EXAMPLE Instances of poorly characterized effects include environmental conditions, effects be-
tween samples, mismatch between the calibration standards and the samples subject to measure-
ment, treatment of test items prior to measurement, and the effects of sampling, sample transfor-
mation and sub-sampling.

10.4.2 Further instances of poorly understood effects include effects due to different
operators, measurement conditions kept within certain limits, different artefacts and sub-
samples. These effects, which give rise to the dispersion of the values obtained for the
measurand, should be included in the measurement model. It is often appropriate to eval-
uate under such conditions the standard uncertainty associated with the estimate of an
input quantity, unless method validation, repeated observations on retained samples or
artefacts, or quality control data show relevant between-run or between-measurement ef-
fects (see also JCGM 100:2008, annex H.5). In particular, long-term effects tend to be
more significant and appropriate techniques, such as analysis of variance, should be used
for evaluating such reproducibility effects. It is crucial to include random variation in a
measurement model in order to obtain a realistic evaluation of the uncertainty arising from
these effects. The topic of modelling random variation is considered in annex C.

10.4.3 The available knowledge about poorly understood effects is formally encapsulated
in a random variable (see 5.5) having expectation zero or one for additive or multiplicative
effects, respectively, and standard deviation providing a reasonable representation of the
uncertainty associated with the effect. Such a random variable does not modify the esti-
mate of the measurand, but contributes to the uncertainty associated with that estimate
(also see 9.3 note 2).

NOTE Reproducibility studies can be a suitable way to characterise poorly understood effects if
reproducibility can be established in related measurements. Guidance on the use of precision data
is given in annex C.5.

EXAMPLE 1 How long is a piece of string? (continued from the example in 8.4.2)

Apart from Q11, the quantities in the measurement model given there all constitute correction terms.
All these correction terms apart from Q23 and Q24 are additive and would have an estimate of zero.
Q23 would have an estimate equal to the (non-zero) expectation of the chi-squared distribution
assigned to it, and Q24 would have an estimate of unity since it is the only multiplicative correction
in the model.

EXAMPLE 2 Release of cadmium from ceramic ware (also see the example in annex F)

The amount of cadmium released from ceramic ware is typically determined using atomic absorp-
tion spectrometry. A measurement model for r, the mass of cadmium leached per unit area of
ceramic ware, is [63, appendix A, example A.5]

r =
γ0VL

aV
d,

where γ0 is the mass concentration of cadmium in the extraction solution, VL is the volume of the
leachate, aV is the surface area of the vessel and d is the dilution factor. A more complete model is

r =
γ0VL

aV
d facid ftime ftemp, (23)

where facid, ftime and ftemp are multiplicative correction factors modelling the effects of acid concen-
tration, duration of digestion and temperature. Estimates of the input quantities and the associated
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relative standard uncertainties are given in table 4. The relative standard uncertainties associated
with the estimates

bfacid = bftime = bftemp = 1

are provided by, for instance, method validation data [63, Example A.5]. Since no dilution was
applied in the present example, d is exactly one. Using the relative standard uncertainties in table
4, given in [63, appendix A, example A.5] for this example, yields urel(br) = 0.097.

Table 4: Estimates and relative standard uncertainties for cadmium release measurement model

bγ0 bVL baV
bd bfacid

bftime
bftemp

0.26 mgL−1 0.332 L 5.73 dm2 1 1 1 1

urel(bγ0) urel(bVL) urel(baV) urel(bd) urel(bfacid) urel(bftime) urel(bftemp)
0.069 0.0054 0.033 0 0.0008 0.001 0.06

10.5 Shared effects

10.5.1 In many cases, the same effect acts on two or more input quantities in a measure-
ment model, thus introducing correlation. Such an effect is due, for instance, to the same
measuring system, physical measurement standard or reference datum.

EXAMPLE Shared temperature effect

A thermometer is used to determine a temperature correction required in the estimation of input
quantity X i . The same thermometer is used to determine a similar temperature correction needed
in the estimation of input quantity X j . The quantities X i and X j (strictly, the associated random
variables) may be significantly correlated.

10.5.2 The original set of input quantities X1, . . . , XN upon which the measurand Y de-
pends can sometimes be redefined in such a way as to include as additional independent
input quantities those quantities Q` that are common to two or more of the original X i .
In the case of the example in 10.5.1, the quantities that define the calibration function
for the thermometer (used to determine the temperature corrections) may be included as
additional independent input quantities. Then the measurement model can be expressed
in terms of independent quantities. Nonetheless, in some situations it may be more con-
venient to retain covariances rather than to increase the number of input quantities. In
many cases it is not possible to remove the correlation because of insufficient information.
Such a situation is likely to occur whenever measurement standards are calibrated in a
laboratory and used in another laboratory for subsequent calibrations (also see 8.4.3).

10.5.3 The correlation from shared effects has implications in the context of building
an appropriate measurement model and impacts on the evaluation of the uncertainty as-
sociated with an estimate of the measurand. It is convenient to describe these common
effects in the framework of multi-stage models (see 8.4.1 and 8.4.3). In this context, two
input quantities X i and X j depend on quantities Q1, . . . ,QL (the common systematic ef-
fects). Thus, X i = Fi(Q1, . . . ,QL) and X j = F j(Q1, . . . ,QL), although some of Q1, . . . ,QL
may actually appear only in one function and not in the other.
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EXAMPLE Calibrated resistors in series

Ten resistors, each of nominal resistance Ri = 1 kΩ, are calibrated with a negligible uncertainty of
comparison in terms of the same 1 kΩ standard resistor RS characterized by a standard uncertainty
u(RS) = 100 mΩ as given in its calibration certificate. The resistors are connected in series with
wires having negligible resistance in order to obtain a reference resistance Rref of nominal value
10kΩ. Thus, the measurement model is

Rref =
10
∑

i=1

Ri . (24)

Let the calibration of resistor i be represented by

Ri = αiRS, (25)

with αi a resistance ratio and u(αi) the associated standard uncertainty as obtained from repeated
observations. It follows from the law of propagation of uncertainty [JCGM 100:2008 5.2] that the
variance associated with Ri and the covariance associated with Ri and R j are

u2(Ri) = R2
Su2(αi) +α

2
i u2(RS), u(Ri , R j) = αiα ju

2(RS), (26)

respectively. When, as occurs in practice, the αi take values very close to a common value α with
very small standard uncertainties, expressions (26) reduce to

u2(Ri) = u(Ri , R j)≈ α2u2(RS),

for all i and j, from which the correlation coefficient

u(Ri , R j)

u(Ri)u(R j)
≈ 1.

The formula in JCGM 100:2008 5.2.2 note 1 then yields for the standard uncertainty associated
with Rref,

u(Rref) =
10
∑

i=1

u(Rs) = 10× (100mΩ) = 1Ω.

Taking no account of correlation, namely, applying the law of propagation of uncertainty for inde-
pendent quantities, JCGM 100:2008, equation (10), yields

u(Rref) =

�

10
∑

i=1

u2(Rs)

�1/2

= 0.32Ω,

which is incorrect, being too small by a factor of 3.

Since the dominant uncertainty is that associated with RS, which is common to all the resistor
measurements, the errors in determining the different Ri are almost perfectly correlated and the
final resistance Rref is effectively a known multiple (

∑

i αi ≈ 10) of RS with a corresponding 10-
times larger uncertainty. Neglecting correlations leads to the incorrect result

p
10u(Ri) because it

assumes that the errors associated with individual resistance measurements vary independently.

The expressions (24) and (25) constitute a simple instance of a two-stage model, the first stage in
which RS and the αi are input quantities and the Ri are output quantities, and the second stage
in which the Ri are the input quantities and Rref is the output quantity. Substitution of expression
(25) into (24) gives a single-stage model.

© JCGM 2020 – All rights reserved



JCGM GUM-6:2020 37

10.6 Drift and other time-dependent effects

10.6.1 Many measurement standards show drift over time. A measurement standard
used as a reference is typically not calibrated immediately before use. Whenever the stan-
dard is used, it is necessary to update its value and standard uncertainty reflecting the
possible change in the measurement standard since it was last calibrated. A recorded his-
tory of calibration results provides information about changes in the standard up to its
most recent calibration. By fitting a suitable model to the recorded values of the standard
as a function of time, the value of the measurement standard and the associated standard
uncertainty at the time of use can be inferred.

10.6.2 By plotting the time history of the quantity of interest, it can be seen whether the
standard is fluctuating at random, or if there is a trend whether it appears to be linear
or not. For a well-maintained measurement standard, a linear drift model such as that
described in the example in 10.6.4 is often appropriate.

10.6.3 Any explanatory model should include terms to represent the time effect. The
terms can describe corrections to the observations so that they relate to a single quantity
measured at a convenient reference time. Alternatively, the terms can constitute param-
eters in a model of the observations as a function of time (as in 10.6.1). The corrections
(in the former case) and the function parameters (in the latter case) are characterized
by estimates and associated uncertainties and covariances (or, more generally, by a joint
probability distribution).

10.6.4 A suitable model will enable, under appropriate assumptions, a value of the mea-
surement standard to be estimated at the time of use and the associated uncertainty eval-
uated. Care should always be taken since such estimation is a prediction or extrapola-
tion beyond the span of existing data. See 13.2. See also reference [54], which provides
additional detail, particularly including approaches for dealing with the effects of such
time-dependent changes as a part of traceability statements.

NOTE Current guidance on the production and certification of reference materials [89,97] requires
that the uncertainty associated with the property value includes long-term effects.

EXAMPLE Drifting resistance standard

A national metrology institute (NMI) provides calibration services for resistance standards based
on a secondary working standard that is calibrated using a primary 200Ω standard approximately
every six months. The 200Ω standard exhibits drift due to recognized physical effects. Although
no theoretical model of such effects is used, experience of a wide selection of high-quality standards
suggests the drift can be explained by an empirical straight-line model. The value R of a standard re-
sistor is most conveniently expressed as a relative deviation y =∆R/Rnom = (R− Rnom)/Rnom from
its nominal value Rnom.

The observed relative deviations for a 200Ω secondary resistance standard over the last 20 cali-
brations with time values t i and relative deviations yi is shown in figure 5. The calibration points
(t i , yi) are given as crosses in the figure and provided in table 5. The constant standard uncertainty
0.025× 10−6 was assigned to all yi based on knowledge of the measurement. The t i were taken
as exact.
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Figure 5: Relative deviation from nominal of a resistance standard measured at approximately
6-monthly intervals, fitted drift line and 95 % coverage corridor

Table 5: Resistance drift data

t/d 3588 3731 3 916 4 089 4 325
y/10−6 17.909 3 17.900 8 17.949 3 17.953 9 18.0032

t/d 4520 4686 4 843 5 143 5 381
y/10−6 18.022 0 18.065 9 18.082 1 18.138 4 18.1719

t/d 5982 6157 6 445 6 817 7 219
y/10−6 18.229 4 18.265 5 18.295 9 18.334 8 18.4009

t/d 7533 7966 8 149 8 683 9 059
y/10−6 18.420 5 18.449 8 18.558 0 18.647 0 18.6916

The central blue line in figure 5 shows the time-dependent estimate of the relative deviation ob-
tained by fitting a straight line to the calibration points using least-squares regression respecting
the given uncertainties. The lower and upper red lines indicate a 95 % coverage corridor for y , as
functions of time. The evaluated standard deviation of the dispersion of the data about the straight
line is 0.023× 10−6, which compares well with the standard uncertainty of 0.025× 10−6 associated
with the yi .

A customer calibration against the NMI’s working standard can take place at any time tC, say,
typically within a 6 month period, since the most recent re-calibration. The value of the NMI’s
standard at that time is based on the value of the straight line at t = tC.

For the value tC = 9 242d, approximately 6 months after the most recent t-value in the table,
the extrapolated value using the fitted straight line is byC = 18.6917× 10−6. (Extrapolation can
in general be dangerous: see 13.2.) The standard uncertainty associated with byC, obtained by
propagating the standard uncertainties and covariance associated with the regression coefficients,
is u(byC) = 0.0123× 10−6. The expanded uncertainty for 95 % coverage is 0.025 8× 10−6 based
on the assumption that the measurement errors in the yi can be regarded as draws from a normal
distribution.
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11 Statistical models used in metrology

11.1 General

11.1.1 Statistical models use probability distributions to reconcile the variability of repli-
cated observations of the same property that depends on the measurand, or the dispersion
of multiple measured values obtained for the same measurand, with the unknown, single
true value of the measurand [44,127].

11.1.2 Models of this kind underlie all Type A evaluations of uncertainty, even if they
are not articulated explicitly: in table H.2 of JCGM 100:2008, five replicated readings of
electric current are combined into their arithmetic average, and the experimental standard
deviation of this average is computed according to equation (5) in the GUM. The choice
of the average as presumably ‘best’ (in the sense of minimum mean squared error) to
summarize those observations suggests a measurement model where the observations are
equal to the true value of the current plus normally distributed errors, all of the same
precision. Reliance on equation (5) suggests that these observations are believed to be
uncorrelated.

EXAMPLE Force transducer

When calibrating a force transducer [12, 13], and essentially the same force is applied repeatedly
to it, the corresponding values of the deflection caused by the force typically will differ from one
instance of application to another. This measurement may be modelled by saying that each obser-
vation of the deflection D is a value of a normal random variable whose mean is a linear function of
the force F , with an unknown standard deviation σ that characterizes the dispersion of the values
of the deflection obtained under conditions of repeatability. In this case the measurement model
may be written as

D = α+ βF + ε,

where α and β denote coefficients to be estimated using least squares, for example, from the data
gathered in the calibration experiment, and ε is assumed to be a normal random variable with
mean 0 N and unknown standard deviation σ.

11.1.3 Statistical models are either mathematical or algorithmic descriptions of the rela-
tion between empirical observations and the value of some property that is of substantive
interest. The characteristic trait of statistical models, which distinguish them from other
kinds of mathematical models, is that probability distributions are used to accommodate
the fact that empirical observations made repeatedly of the same property typically vary,
even when the value of this property remains constant.

11.1.4 Statistical models employ probability distributions to describe sampling variabil-
ity, or uncertainty more generally, which render details of the observations (empirical data)
unpredictable. Such uncertainty clouds the relationship between true values of observable
properties and true values of properties of interest that are not accessible to direct obser-
vation, whose values need to be inferred from the experimental data.
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EXAMPLE Newtonian constant of gravitation

The Newtonian constant of gravitation G has been measured in many experiments implementing
a wide variety of approaches that rely on different physical laws describing how observable phe-
nomena are informative about its value. From early measurements of the density of the Earth,
in particular by Henry Cavendish [27], to interferometry using cold atoms [147], and including a
great variety of experiments involving balances of different kinds, a collection of measurement re-
sults has been assembled in the course of more than 200 years, yet without succeeding in achieving
relative measurement uncertainty comparable to those that are associated with most other funda-
mental constants, even though sophisticated statistical models and methods of data reduction have
been employed to derive a consensus value from the accumulated data [122].

11.1.5 Many different types of statistical models may be used as measurement models.
The simplest, and most commonly used such model for scalar observations made under
conditions of repeatability is illustrated in example 1 in 11.3. Subclauses 11.4 to 11.8
review several models that are particularly useful in measurement science.

11.2 Observation equations

Statistical models link measurement inputs (observations) to the true value of the mea-
surand probabilistically. For example, a so-called observation equation [69,142] expresses
the observations as realized values of random variables whose probability distribution de-
pends on the true value of the measurand: more precisely, where such true value is a
known function of one or several parameters that specify the probability distribution of
the observations. The expression ‘observation equation’, or ‘observational equation’, has
been in use in metrology for a very long time [22, 60, 136, 155], even though the precise
and specific meaning just described is fairly recent.

NOTE 1 The inputs for a measurement model (statistical or of any other kind) are observed values
x1, . . . , xN of properties (which may be quantitative or qualitative) that are informative about the
measurand in the sense that, once suitably combined, possibly also taking into account information
about the measurand originating from other sources, produce an estimate of the true value of the
measurand.

NOTE 2 For statistical models, the observations x i may be considered as being made under con-
ditions of repeatability (see JCGM 200:2012, 2.20) or under other conditions (for example, re-
producibility conditions (see JCGM 200:2012, 2.24), depending on modelling choice and circum-
stances.

EXAMPLE Newtonian constant of gravitation (continued from 11.1.4)

A statistical model for N independent measurement results obtained for G expresses them as out-
comes of observable random variables Gi = G + λi + Ei , for i = 1, . . . , N , where λi denotes an
effect specific to experiment i, and Ei denotes measurement error. The specification of the model
includes a characterization of the probability distributions of the experiment effects and of the mea-
surement errors: for example, that λ1, . . . ,λN are like a sample from a normal distribution with
mean 0 m3 kg−1 s−2 and unknown standard deviation τ, and that the measurement errors are like
outcomes of independent random variables with distributions centered at 0 m3 kg−1 s−2 but with
possibly different unknown standard deviations.
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11.3 Specification of statistical models

11.3.1 Statistical models can often be specified by providing (i) as many simultaneous
equations as there are observations made in the course of measurement, whose left sides
have random variables representing the observations, and whose right sides have func-
tions of several random variables whose realized values determine the observations, (ii) a
description of the joint probability distribution of the random variables that appear on the
right side of these equations, and (iii) an equation or algorithm that describes the relation
between the parameters of this joint distribution and the true value of the measurand. A
simple instance is provided as example 1 in 11.3.3.

11.3.2 Since the specification of a statistical model includes a statement about the prob-
ability distribution(s) assumed, it is important to recognize that the results obtained will
generally be different under different assumptions. No general guidance can be offered
since knowledge of the application almost wholly dictates the assumptions to be made.

11.3.3 When describing statistical models, particular observed values are usually dis-
tinguished from the corresponding random variables by using lower case letters for the
former and upper case letters for the latter. However, the same symbols are very often
used to denote either, their particular meaning being clear from the context. This simpli-
fication is motivated by the informal understanding of a random variable as a property
value that is clouded by uncertainty, and that has a probability distribution as an attribute
that characterizes and quantifies this uncertainty precisely.

EXAMPLE 1 Electric current — model

Table H.2 in JCGM 100:2008 lists the following values of electric current determined under condi-
tions of repeatability:

19.663 mA, 19.639 mA, 19.640 mA, 19.685 mA, 19.678 mA.

Assuming that the current I0 (the measurand) remained constant as these observations were made,
a particularly simple statistical model that explains how they may be consistent with the true value
of the measurand expresses each observed value as

I j = I0 + E j , j = 1, . . . , 5,

where E1, . . . , E5 denote (non-observable) measurement errors assumed to be independent, normal
random variables with mean 0 mA and unknown standard deviation σ. In this case, the statistical
model asserts that I1, . . . , I5 are independent, normal random variables whose common mean is
the measurand I0, all with the same standard deviation σ. As is often the case with statistical
models, the measurand is a parameter (the mean in this case) of the probability distribution of the
observations.

EXAMPLE 2 Lifetime of ball bearings — model

Table B-5 of [114] lists the following results of an experiment to measure the lifetime of a batch of
ball bearings, expressed as millions of revolutions at the time of failure: 6.0, 8.6, 17.8, 18.0, 27.5,
33.5, 50.5, 51.5, 69.0, 74.0, 74.0, 89.0, 109.0, 118.0, 119.0, 138.0, 141.0, 144.0, 146.0, 150+,
151, 153+, 153+, 153+. Four of these (marked with a plus sign) represent censored observations.
For instance, ‘150+’ means that the corresponding ball bearing had not yet failed when the experi-
ment was terminated and the ball had already undergone 150 million revolutions. These numbers
of revolutions are assumed to have been observed under conditions of repeatability, and, in the
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original study [114] they are modelled as a sample from a Weibull probability distribution with
unknown values of its scale S and shape A. The measurand is the mean (or expected) lifetime,

T = S Γ (1+ 1/A),

where Γ denotes the gamma function of mathematical analysis [8]. In this case, the measurand is a
function of the parameters (S and A) of the probability distribution of the observations. Considering
the fact that if R is a random variable with a Weibull distribution with scale S and shape A, then
(R/S)A has an exponential distribution with mean 1, the statistical model may also be written as
an explicit observation equation that represents each observed number of revolutions as outcome
of the random variable Ri such that

ln Ri = ln S + (1/A) ln Ei , i = 1, . . . , 24,

where the Ei denote non-observable measurement errors modelled as independent random vari-
ables whose common probability distribution is exponential with mean 1.

EXAMPLE 3 Mass fraction of tin — model

The value assigned to the mass fraction of tin in a reference solution used for spectrometric cali-
brations is a consensus value resulting from combining measurement results obtained gravimetri-
cally and via inductively coupled plasma optical emission spectroscopy (ICP-OES) [138]. For one
particular version of this reference solution, the measured values were wG = 10.00007 mgg−1

from gravimetry and wI = 10.02239 mgg−1 from ICP-OES. The corresponding associated stan-
dard uncertainties were u(wG) = 0.000 31mg g−1 based on νG = 278 degrees of freedom, and
u(wI) = 0.00264 mgg−1 based on νI = 11 degrees of freedom. The measurand is ω in the random
effects model (see 11.5.3) that comprises two simultaneous observation equations,

wG =ω+λG + εG, wI =ω+λI + εI,

where λG and λI denote method effects, and εG and εI denote method-specific measurement errors.
The specification of the model is completed by assuming that the method effects are independent
normal random variables with mean 0 mg g−1 and unknown standard deviation τ, and that the
method-specific measurement errors are independent random variables with scaled Student’s t
distributions centered at 0 mgg−1, with νG and νI numbers of degrees of freedom, and unknown
standard deviations u(wG) and u(wI).

11.4 Models for calibration and analysis

11.4.1 The calibration of a measuring instrument serves to characterize how the instru-
ment responds when presented with a measurement standard. This characterization in-
volves establishing a relationship (calibration function) between values of calibration stan-
dards presented to the instrument, and the indications that the instrument produces in
response (that is, the calibration function maps values of standards to instrumental indi-
cations), and evaluating the uncertainty associated with the resulting calibration function.

11.4.2 To use the instrument in practice the inverse relation is needed, which maps an
instrumental indication into a value of the measurand: for example, the inverse of the
calibration function is called analysis function in gas metrology [73], and measurement
function in force metrology [13]. For example, the calibration of an electrical load cell
involves applying specified forces to it, reading the corresponding values of electromotive
force (voltages) produced by the cell, and then building a function, most commonly a
polynomial of low degree, that maps values of force to voltages or ratios of voltages [13].
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11.4.3 Since both the values of the measurement standards used in calibrations, and the
corresponding instrumental indications, typically have non-negligible associated uncer-
tainties, the statistical model usually most appropriate for calibrations is errors-in-variables
regression [70], which may be employed to produce an analysis function, in the sense of
ISO 6143 [94], directly, not by inversion of a calibration function. When the uncertain-
ties associated with the values of the standards are negligible by comparison with the
uncertainties associated with the instrumental indications, ordinary regression (where the
fitted calibration curve minimizes a measure of the distances between observed and pre-
dicted values of the instrumental indications) may suffice. In some cases, the analysis (or
measurement) function is determined directly during calibration, not via mathematical
inversion of the corresponding calibration function.

EXAMPLE Amount fraction of N2O in southern oceanic air — model

Figure 6 shows the data listed in table 6 for the primary standard mixtures that were used to build
an analysis function A to assign values to the amount fraction of N2O in a reference material com-
prising southern oceanic air collected at Baring Head, New Zealand [145]. The analysis function
A produces a value of the amount fraction of N2O, x(N2O) = A(r), that corresponds to a ratio r of
the instrumental indications obtained contemporaneously for a calibration standard (or for a gas
sample whose amount fraction of N2O is to be determined) and for the air in a particular cylinder
designated as the lot standard. The statistical model comprises three relations for each standard:

x = ξ+ ε, r = ρ +δ, ξ= A(ρ).

The first two indicate that the reported amount fraction in the standard x , and the correspond-
ing instrumental reading r, are both affected by measurement errors, with ξ and ρ denoting the
corresponding true values. The third states that the analysis function A relates corresponding true
values. In gas metrology, A usually is a polynomial of low degree that is fitted to the calibration data
using errors-in-variables regression because the values of both x and r have non-negligible associ-
ated uncertainties, whose relative sizes are comparable in this case (last two columns of table 6).
Example 4 in 11.9.8 describes the estimation and uncertainty evaluation for A.

Table 6: Analysis of the primary standard mixtures used to assign values to the amount fraction x
of N2O in a southern oceanic air reference material [145]

Standard x/ u(x)/ r u(r) (u(x)/x)/ (u(r)/r)/
mixture (nmol/mol) (nmol/mol) % %

FF22270 314.952 0.047 0.972 355 0.000099 0.015 0.010
FF22225 319.646 0.048 0.987 466 0.000155 0.015 0.016
CAL016773 326.325 0.057 1.006 460 0.000078 0.018 0.007 8
FF22145 331.135 0.057 1.021 310 0.000132 0.017 0.013
FF22181 338.390 0.058 1.043 740 0.000131 0.017 0.013
FF22146 344.378 0.060 1.062 970 0.000071 0.017 0.006 7

11.5 Models for homogeneity studies

11.5.1 The preparation of reference materials in batches intended to be subdivided into
separately packaged items (or units) that are assigned the same value and associated un-
certainty, typically involves a study of the homogeneity of the batch, based on replicated
measurements made in different units of the material.
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Figure 6: Analysis function used to assign values to the amount fraction of N2O in a southern
oceanic air reference material. The coordinates of the black dots are ratios and amount fractions
for the primary calibration standards

11.5.2 ISO Guide 35 [97] provides guidance for characterizing the homogeneity of ref-
erence materials. This Guide recognizes that homogeneity studies traditionally have in-
cluded a statistical test to assess whether between-unit differences are significantly larger
than within-unit differences, or larger than the uncertainty that the producer of the ref-
erence material achieved when measuring a single unit. ISO Guide 35 chooses to focus
instead on whether the between-unit standard deviation is sufficiently small for the pur-
pose that the candidate reference material is intended to serve, and in its clause 7.10
suggests four criteria for checking whether this is the case: criteria (a)-(c) are accepted,
practical conventions that ignore the sampling uncertainty surrounding the estimate of the
between-unit standard deviation; criterion (d) recommends that a statistical test be carried
out to ascertain ‘that the between-unit term is not statistically significant at the 95 % level
of confidence’, suggesting the Snedecor-Fisher F test as one possibility.

11.5.3 The Snedecor-Fisher F test is usually carried out using the output from a con-
ventional analysis of variance (ANOVA). The statistical model underlying such ANOVA ex-
presses each measured value wi j as a sum of the value ω of the measurand, an item effect
λ j , and a measurement error εi j , for replicate determination i in item j: wi j =ω+λ j+εi j .
The item effects λ j are modelled as a sample from a normal probability distribution with
mean 0 and unknown standard deviation τ, and the εi j are modelled as a sample from
a normal probability distribution with mean 0 and unknown standard deviation σ. Be-
cause the item effects are modelled as random variables, this model is a random effects
model. In this setting, the Snedecor-Fisher F test is equivalent to testing the hypothesis
that τ = 0 (with the appropriate units). In practice, and for many reference materials, a
modicum of heterogeneity is acceptable, and it is recognized and expressed in the uncer-
tainty associated with the estimate of ω. When a candidate reference material is found to
be excessively heterogeneous, in some cases it may be possible to split it into portions that
are sufficiently homogeneous: this is often the case when the reference material is a gas
mixture, and the items are cylinders that have been filled by drawing from several batches
of the mixture, nominally of the same composition, yet whose actual compositions are too
different for the intended purpose.
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11.5.4 The Snedecor-Fisher F test is very sensitive to violations of the assumptions just
stated, that validate the underlying statistical model. Therefore, the validity of these as-
sumptions needs to be checked, at a minimum by examining QQ-plots [28] of the es-
timates of the item effects, and of the measurement errors. Neither the Kruskal-Wallis
test [78, Section 6.1] (implemented in function kruskal.test, which is included in
‘base’ R, available at https://www.r-project.org/) nor the Fisher-Pitman permuta-
tion test [14] (implemented in function oneway_test of R package coin, available at
https://www.r-project.org/) require the assumption of normality, and both can be
used to assess homogeneity because they test whether the true values of the measurand in
different items are significantly different, when determinations of the measurand can be
made in multiple aliquots drawn from each item.

EXAMPLE Barium in clay soil — model

Table 7 lists measured values of the mass fraction of barium in aliquots of a clay soil used in a
homogeneity study [159]. The model for this data is the additive model described in 11.5.3. The
results of fitting this model to the data in the table are presented in Example 5 under 11.9.8. Here
the focus is on statistical tests of the hypothesis of homogeneity. The p-values from the conventional
ANOVA F -test, the Kruskal-Wallis test and the Fisher-Pitman permutation test above are 0.09, 0.15,
and 0.09, respectively. A p-value is the probability of observing a value of the test criterion at least
as extreme as was observed, under the assumption of homogeneity: since none of these p-values
is alarmingly small, none of the tests rejects the hypothesis of homogeneity.

Table 7: Values of the mass fraction (mg kg−1) of barium in a clay soil measured for a homogeneity
study — reproduced from Table 1 of [159]

Sample Replicates Sample Replicates

0118 323 301 310 1133 310 328 312
0201 340 334 316 1249 314 314 302
0383 320 321 309 1464 329 300 299
0442 315 338 321 1581 320 329 311
0557 326 338 325 1607 322 312 311
0666 325 302 304 1799 332 317 299
0791 324 331 317 1877 313 294 293
0918 310 310 331 1996 324 314 335
1026 336 321 328 2000 321 342 316

11.6 Models for the adjustment of observations

11.6.1 In geodetic and astronomical measurement, as well as in conventional dimen-
sional metrology and in the calibration of weights, the adjustment of observations consists
of applying a measurement model and data reduction procedure to produce mutually con-
sistent estimates of the true values of the angles or distances, or of the masses, that are the
measurands. Applications include ‘aligning’ point clouds measured by different coordinate
measuring machines and expressed relative to different reference frames;, assigning values
to distances between landmarks based on redundant, mutually inconsistent triangulations
in geodetic surveys, civil engineering, and industrial assembly of large structures (for ex-
ample, in aeroplane manufacturing); and calibrating weights. In all cases, it is required to
qualify the results with evaluations of uncertainty.
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11.6.2 The model that is most commonly used for the adjustment of observations in
this sense expresses each observation as the sum of an unknown true value and a non-
observable error (which may be a scalar or a vector) with mean zero, where the true
values are assumed to satisfy particular ‘equations of condition’. The adjustment is typi-
cally carried out by application of the method of least squares, which is equivalent to the
method of maximum likelihood when the errors are assumed to be outcomes of indepen-
dent, normally distributed random variables.

EXAMPLE 1 Calibrating a geodetic base line — model

Figure 7 shows the segments with lengths L1, . . . , L6 that were surveyed to obtain an estimate of
the length of the straight base line between geodetic markers A and D, computed as the sum of
the distances from A to B (λ1), from B to C (λ2), and from C to D (λ3). The observations were
L1 = 27.19 m, L2 = 33.08m, L3 = 25.33 m, L4 = 60.33m, L5 = 58.35 m, and L6 = 85.59m. The
observed lengths are mutually inconsistent because, for example, L2 + L3 6= L5.

● ● ● ●

25 m

A B C D

λ1 λ2 λ3

L1

L2

L3

L4

L5

L6

Figure 7: Observations made to calibrate the length of base line A-D

The models for the observations are L1 = λ1 + E1, L2 = λ2 + E2, L3 = λ3 + E3, L4 = λ1 + λ2 + E4,
L5 = λ2 + λ3 + E5, and L6 = λ1 + λ2 + λ3 + E6, where E1, . . . , E6 denote measurement errors.
In geodesy, the additional assumption is commonly made that the measurement errors are like a
sample from a normal distribution with mean 0 m and unknown standard deviation σ.

EXAMPLE 2 Standard relative atomic mass of tellurium

Before mass spectrometric measurements were common, relative atomic masses (also called atomic
weights) of the elements were determined from sets of measurements linking the chemical equiv-
alents of various elements. For instance, the relevant data involving tellurium are as follows [45]:

Ar(TeBr4)/(4Ar(Ag)) = 1.036 49, u(Ar(TeBr4)/(4Ar(Ag))) = 0.000 04,

Ar(TeBr4)/(4Ar(AgBr)) = 0.595 426, u(Ar(TeBr4)/(4Ar(AgBr)) = 0.000 025,

Ar(TeCl4)/(4Ar(Ag)) = 0.624427, u(Ar(TeCl4)/(4Ar(Ag))) = 0.000 034,

Ar(TeCl4)/(4Ar(AgCl)) = 0.469962, u(Ar(TeCl4)/(4Ar(AgCl))) = 0.000 027,

Ar(Ag2Te)/(4Ar(Ag)) = 1.591 44, u(Ar(Ag2Te)/(4Ar(Ag))) = 0.000 03.

Treating the relative atomic mass of silver, Ar(Ag), as an additional input variable these observa-
tions provide a set of equations whose least-squares solution estimates the relative atomic mass of
tellurium (along with bromine and chlorine).
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11.7 Models for time series

11.7.1 Observations made repeatedly of the same phenomenon or object, over time or
along a transect in space, often equispaced in time or equidistant in space, tend to be
interrelated, the more so the greater their proximity. The models used to study such series
of observations involve correlated random variables [23,134].

11.7.2 A particularly rich and widely used class of models for series of observations
x t1

, x t2
, . . . made at equispaced epochs t1, t2, . . . are the so-called ARIMA (auto-regressive,

integrated, moving average) models [23]. These models are applicable to series whose
level and pattern of oscillations remain constant over time, as well as to series whose level
(for example, the mean) drifts with passing time. For the latter, the model focuses on
differences, for example on first differences x t i

− x t i−1
.

11.7.3 ARIMA models express the value observed at a particular epoch (possibly after
differencing the series), as a linear combination of values observed at a finite number of
previous epochs, plus an ‘error’ that itself is a linear combination of measurement errors
affecting the current observation and a finite number of previous observations. In the
following example, an ARIMA model is used for a time series of values of temperature of
a thermal bath measured at regular intervals. It captures the fact that values measured
at nearby epochs tend to be more similar than values at more widely separated epochs.
Recognizing the structure of the resulting correlations, and modelling them accurately,
may impact on uncertainty evaluations considerably, as illustrated in example 9 in 11.9.8.

EXAMPLE Temperature of a thermal bath — model

The readings of temperature listed in Table 8 and depicted in Figure 8 were taken every minute with
a thermocouple immersed in a thermal bath during a period of 100 min. These observations serve
(i) to estimate the temperature of the bath assuming that it is in thermal equilibrium, and (ii) to as-
certain that the bath indeed is in thermal equilibrium. Owing to uncontrolled exchanges of thermal
energy with the environment external to the bath, which are counterbalanced by controlled heating
and circulation of the fluid, even if the temperature of interest does not drift, it will still oscillate
over time around its mean value τ, which is the primary measurand. The secondary measurand
is the pattern of such oscillations. The inputs are readings of temperature t1, . . . , tm, where t i de-
notes the reading made i minutes after the beginning of the experiment, for i = 1, . . . , m= 100. A
time series model for the t i describes how consecutive readings of temperature are related to one
another and to τ. The structure of this model, and estimates of its adjustable parameters, charac-
terize the pattern of oscillations observed when the bath is in a steady thermal state. The following
auto-regression of order 2 [23] has been found to be adequate for these data [141, V.B.1]:

t i = τ+ϕ1(t i−1 −τ) +ϕ2(t i−2 −τ) + εi ,

where the εi are assumed to be uncorrelated normal random variables with mean 0 °C and unknown
standard deviation σ. The specification of this model comprises four parameters, τ, ϕ1, ϕ2 and
σ, of which τ is the primary measurand, and the other three characterize the state of thermal
equilibrium.

This example has also been analyzed using a slightly different model in reference [139].
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Table 8: Time series of temperature readings made every minute, expressed as deviations from
50 °C. The first reading was 50.1024 °C, the tenth 50.1072 °C, the eleventh 50.105 4 °C, etc. [48]

0.1024 0.1054 0.1026 0.1042 0.1026 0.1039 0.1065 0.1052 0.1067 0.1072
0.1054 0.1049 0.1082 0.1039 0.1052 0.1085 0.1088 0.1075 0.1085 0.1098
0.1070 0.1060 0.1067 0.1065 0.1072 0.1062 0.1085 0.1062 0.1034 0.1049
0.1044 0.1057 0.1060 0.1082 0.1052 0.1060 0.1057 0.1072 0.1072 0.1077
0.1103 0.1090 0.1077 0.1082 0.1067 0.1098 0.1057 0.1060 0.1019 0.1021
0.0993 0.1014 0.0965 0.1014 0.0996 0.0993 0.1003 0.1006 0.1026 0.1014
0.1039 0.1044 0.1024 0.1037 0.1060 0.1024 0.1039 0.1070 0.1054 0.1065
0.1072 0.1065 0.1085 0.1080 0.1093 0.1090 0.1128 0.1080 0.1108 0.1085
0.1080 0.1100 0.1065 0.1062 0.1057 0.1052 0.1057 0.1034 0.1037 0.1009
0.1009 0.1044 0.1021 0.1021 0.1029 0.1037 0.1049 0.1082 0.1044 0.1067

Figure 8: Time series of the temperature readings listed in table 8

11.7.4 In some applications, where an observed time series is used as input for subse-
quent data reduction steps, an ad hoc smoothing procedure, as an alternative to fitting an
explicit model, suffices to abate the extent of the uncertainty that is propagated down-
stream. Moving averages (in particular, exponentially weighted moving averages) and
moving medians are widely used for this purpose [126, §6.4.3].

11.8 Bayesian statistical models

11.8.1 Bayesian statistical models reflect an understanding of uncertainties associated
with both inputs and outputs as characterizing states of incomplete knowledge about the
true value of the input quantities and of the measurand. They are particularly useful when
there exists information about the true value of the measurand prior to obtaining the results
of a new measurement, by providing the means to update such information with the fresh
data that will be acquired in the new measurement.

11.8.2 The distinctive features of a Bayesian treatment are these: (i) experimental data
are modelled as realized values, or outcomes, of random variables with probability dis-
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tributions involving parameters whose values are either unknown or known only incom-
pletely; (ii) these parameters are modelled as random variables, hence so is the measurand
because it is a function of those parameters — however, none of these random variables
is accessible to direct observation: knowledge of their values is obtained only through the
empirical data; (iii) estimates and uncertainty evaluations for the parameters are derived
from the conditional probability distribution of the parameters given the data (the so-called
posterior distribution).

11.8.3 Accepting (i) and (ii) involve specifying probability distributions for all quanti-
ties involved (data and unknown parameters), and (iii) involves the application of Bayes’
rule [46, section 2.3, theorem 7.2.1], typically using Markov Chain Monte Carlo (MCMC)
sampling to produce an arbitrarily large sample from the posterior distribution [71], which
may then be reduced to produce an estimate of the measurand and the associated uncer-
tainty.

11.8.4 The distribution assigned to the measurand (and to any other quantities whose
values are unknown) is called a prior distribution. It conveys pre-existing knowledge about
the measurand, before any fresh data are acquired in the new measurement experiment.
This knowledge may be derived from historical data [138] describes an instance of this
case for value assignment to reference solutions used in spectrometric calibrations), or
it may reflect a subjective, expert assessment of what is known about the value of the
measurand [130]. When no such information is available, the application of Bayesian
methods requires that a choice be made of a so-called non-informative prior distribution
for the measurand.

11.8.5 Developing a Bayesian model in practice involves choosing a prior distribution.
This choice typically is influential and challenging [16,72]. It is recommended that, when
Bayesian methods are employed, the sensitivity of the conclusions to the choice of prior
be assessed and documented, regardless of whether the prior results from an elicitation
exercise [128] or from application of some prior selection principle [101]. Furthermore,
implementing and using the Bayesian model in practice requires familiarity with suitable,
specialized software for statistical computing [141].

EXAMPLE 1 Pitot tube — model

The airspeed v of an aircraft may be measured using a Pitot tube and the measurement model

v =
p

2DRs T/p,

where D denotes the difference between the total and static pressures, p and T denote air pressure
and temperature, and the specific gas constant for air Rs = 287.058J kg−1 K−1. Reference [140]
discusses this example using data from [104]: D = 1.993kPa, p = 101.4kPa, and T = 292.8 K,
with associated standard uncertainties u(D) = 0.0125 kPa, u(p) = 1.05kPa, and u(T ) = 0.11 K.
Suppose that the estimate of D is the average of five determinations

1.975 kPa, 2.039 kPa, 1.972 kPa, 1.979 kPa, 2.000 kPa

made under repeatability conditions, and that long experience in making these measurements sug-
gest that the standard uncertainty associated with the estimate of D is 0.03 kPa. Suppose also that
the prior knowledge about v is expressed by a normal distribution with mean 55 m s−1 and stan-
dard deviation 10 m s−1. A Bayesian model can be defined by ‘inverting’ the measurement equation
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and reformulating it as a statistical model (cf. [69]): the determinations of D are now regarded as
a sample from a normal distribution with mean pv2/(2Rs T ) and standard deviation 0.03 kPa; Rs
is treated as a known constant. The pressure p and the temperature T are assigned distributions
with means equal to their measured values and standard deviations equal to their standard un-
certainties, the distribution selected for p being normal, and the distribution selected for T being
lognormal (which avoids division by 0 in the mean for D, while being practically indistinguishable
from a normal distribution given that the coefficient of variation u(T )/T is 0.04 %.)

EXAMPLE 2 Copper in wholemeal flour — model

The Analytical Methods Committee of the Royal Society of Chemistry lists the following obser-
vations of the mass fraction of copper (expressed in µgg−1) in wholemeal flour obtained under
conditions of repeatability [2]:

2.9, 3.1, 3.4, 3.4, 3.7, 3.7, 2.8, 2.5, 2.4, 2.4, 2.7, 2.2,
5.28, 3.37, 3.03, 3.03, 28.95, 3.77, 3.4, 2.2, 3.5, 3.6, 3.7, 3.7.

The statistical model for these data expresses the observations as

wi =ω+ εi ,

where ω denotes the true value of the mass fraction of copper in the flour, and the εi denote
measurement errors. A cursory examination of these data suffices to conclude that it is inappropri-
ate to assume that the εi are like a sample from a normal distribution. The Anderson-Darling
test [4] (for example, as implemented in function ad.test of R package nortest, available
at https://www.r-project.org/), corroborates this impression by roundly rejecting the hy-
pothesis of normal shape for the wi . In this case, the culprit is the single outlying observation
of 28.95 µgg−1. That Committee recommended that a Huber M-estimator of location [80] be
used instead of the simple arithmetic average when the observations do not appear to be a sam-
ple from a normal distribution, as alternative to discarding observations that appear to be out-
liers. The Bayesian model defined in [109] (and implemented in R package BEST, available at
https://www.r-project.org/) implements a Bayesian alternative that effectively can model
and adaptively down-weights potential outliers: (a) the data are modelled as a sample from a
Student’s t distribution with ν degrees of freedom, re-scaled to have standard deviation σ, and
shifted to have mean ω; (b) the prior distribution for ω is normal with mean equal to the average
of the observations, and standard deviation 1000s, where s denotes the sample standard deviation
of the observations; (c) the number of degrees of freedom ν is modelled a priori as E+1, where E is
a random variable with an exponential distribution with mean 29; (d) the standard deviation σ of
the εi has a uniform (or, rectangular) prior distribution concentrated between s/1000 and 1000s;
and (e) ω, σ, and ν are assumed to be independent a priori.

11.9 Estimation and uncertainty evaluation for statistical models

11.9.1 Statistical models enable recasting the measurement problem as a problem in sta-
tistical estimation, thereby consolidating, and executing simultaneously, the two key tasks
involving reductions of measurement data: the assignment of a value to the measurand,
and the evaluation of the associated measurement uncertainty. The generic, statistical
paradigm is as follows: (i) given measurement data that will serve as inputs, a statistical
model (as defined in 11.1.1) is developed that relates the probability distribution under-
lying the data to the value of the measurand; (ii) a criterion is selected that determines
how the information about the measurand should be extracted from the data; (iii) the de-
vice used to extract such information is called an estimator, and its probability distribution
fully characterizes the uncertainty associated with the estimate of the measurand that it
produces.
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11.9.2 The statistical model in (i) above may be expressed by saying that the inputs
x1, . . . , xm are outcomes of random variables whose joint probability distribution depends
on a (possibly vectorial) parameter θ , and the corresponding probability density is writ-
ten as gθ . In Bayesian models, θ is regarded as the realized value of a non-observable
random variable whose distribution (prior distribution) also needs to be specified. Finally,
a function ϕ is required that maps that parameter into the true value of the measurand,
η = ϕ(θ ). In example 2 of 11.3.3, the inputs are the numbers of revolutions until fail-
ure of the m = 24 ball bearings, R1, . . . , Rm. Their probability distribution is Weibull, and
θ = (S, A) is a vector with two components: the scale S and shape A of the Weibull distribu-
tion. The measurand is the expected lifetime of the ball bearings, η= ϕ(θ ) = SΓ (1+1/A).

11.9.3 Many criteria are available that determine how the information should be ex-
tracted that the data provide about the measurand. Reference [46] describes several of
them, including the method of moments, least squares, maximum likelihood, and mini-
mum Bayes risk: these will be variously illustrated in the following examples. Application
of a criterion to the statistical model determines an estimator, which is a function ψ that
takes the measurement data as inputs and produces an estimate bθ =ψ(x1, . . . , xm) of the
parameter θ , whence a corresponding estimate of the true value of the measurand may be
derived as y = ϕ(bθ ). For all statistical models, y is the value of a random variable whose
probability distribution characterizes measurement uncertainty fully.

11.9.4 In some cases it is not possible to define ψ explicitly, and ψ(x1, . . . , xm) is evalu-
ated by executing the steps of an algorithm. In Example 4 in this subclause, estimating the
coefficients of the analysis function used for value assignment for a reference material in-
volves the numerical optimization of a non-linear function. In general, no ‘rearrangement’
of a statistical model is possible that usefully renders it in the form of a measurement model
that could be dealt with as contemplated in JCGM 100:2008. This is obvious for the model
discussed in example 2 of 11.3.3, owing to the presence of censored observations. In some
cases, such ‘rearrangement’ is possible, but it depends on the underlying statistical model
and on the selection of a principle of estimation, as the following example illustrates.

EXAMPLE 1 Method of moments for Weibull lifetime Suppose that, in example 2 of 11.3.3, none of
the observations R1, . . . , Rm (numbers of revolutions until failure of the m= 24 ball bearings) were
censored. In these circumstances, the method of moments [18, example 2.1.2] can be employed
to estimate the scale S and shape A of the Weibull distribution selected as a model for the lifetime
of the ball bearings. The estimates are the solution of the following two, simultaneous, non-linear
equations:

SΓ (1+ 1/A) = (R1 + · · ·+ Rm)/m, S2Γ (1+ 2/A) = (R2
1 + · · ·+ R2

m)/m.

This system of equations is an implicit measurement model for the vector output quantity (S, A),
with the Ri as input quantities. Notice that the measurement function is determined by the under-
lying statistical model and by the choice of method of estimation. S and A may be estimated by
evaluating the measurement function at the observed values of the inputs, and the associated un-
certainties may be evaluated accordingly. In this case, the solution is bS = 103 million revolutions,
and bA= 1.89; hence the corresponding estimate of the mean lifetime is

bT = 103Γ (1+ 1/1.89) million revolutions= 91.4 million revolutions.

The Monte Carlo method of JCGM 101:2008 produces u(bT ) = 10.7 million revolutions, and the
non-parametric bootstrap [53] produces u(bT ) = 10.5 million revolutions.
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EXAMPLE 2 Electric current — rearrangement

Even for the simplest of statistical models, as in example 1 of clause 11.3.3, the trivial ‘rearrange-
ment’

eI0 = (I1 + I2 + I3 + I4 + I5)/5

is justified only if it is assumed that the non-observable measurement errors in the I j are like a
sample from a normal distribution, and that the estimator should have minimum mean squared
error. Different assumptions would lead to estimators different from this arithmetic average.

11.9.5 Statistical models call for a varied assortment of techniques for uncertainty eval-
uation. In some cases, including when the method of moments is used to estimate the pa-
rameters of the distribution underlying the measured values, the approximate technique
described in JCGM 100:2008 [using the law of propagation of uncertainty as in JCGM
100:2008, equation (10) or (13)] is applicable and adequate for the intended purpose.

11.9.6 When maximum likelihood is used to estimate the vector θ of parameters intro-
duced in 11.9.2, and the conditions detailed in [18, theorem 5.4.3] are satisfied (as they
will be in most cases likely to be encountered in practice), then H−1(bθ ) provides an ap-
proximation either to the squared standard uncertainty (when θ is a scalar), or to the
covariance matrix (when θ is a vector), associated with the maximum likelihood estimate,
bθ . When θ is a scalar, H−1(bθ ) is the reciprocal of the second derivative of the negative
loglikelihood function corresponding to the probability distribution underlying the inputs,
evaluated at bθ . When θ is a vector, H−1(bθ ) is the inverse of the matrix of the second-
order partial derivatives of the negative loglikelihood function, evaluated at bθ . In this
case, the square roots of the main diagonal elements of H−1(bθ ) are approximate evalua-
tions of the standard uncertainties associated with the estimates of the parameters, and
the covariances between them are given by the off-diagonal elements of the same matrix.
Since the measurand is a known function of these parameters (in the aforementioned ex-
ample 2 of 11.3.3 the measurand is T = SΓ (1+1/A)), the uncertainty associated with the
corresponding estimate can then be computed using equation (13) in JCGM 100:2008.

11.9.7 Bayesian procedures produce a probability distribution for the parameters of the
distribution underlying the inputs (or an arbitrarily large sample drawn from this distri-
bution), from which the probability distribution (or a sample from the distribution) of the
measurand may be derived straightforwardly. This distribution depends not only on the
model used for the observations, but also on the prior distribution chosen for the parame-
ters that appear in the model for the observations.

11.9.8 In many other cases, methods other than those just mentioned will have to be em-
ployed, for example Monte Carlo methods for propagation of distributions (JCGM 101:2008
and [123]) or bootstrap methods [53]. Also see JCGM 102:2011.

EXAMPLE 1 Electric current — estimation and uncertainty evaluation

The maximum likelihood estimates (MLEs) of I0 and σ that correspond to the model described in
Example 1 of 11.3.3 are as follows [46, Example 7.5.6]:

I =
I1 + · · ·+ I5

5
= 19.661mA, bσ =

√

√ (I1 − I)2 + · · ·+ (I5 − I)2

5
= 0.019 mA.
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For unbiased estimates (that is, estimates whose mathematical expectations are equal to the respec-
tive measurands), the estimate of I0 continues to be I , but the estimate of σ is as follows [47]:

bσ =

√

√ 2
5− 1

·
Γ ( 5

2 )

Γ ( 5−1
2 )
·

√

√ (I1 − I)2 + · · ·+ (I5 − I)2

5− 1
= 0.020 mA.

If the measurement errors are best modelled as a sample from a Laplace distribution, then the MLE
of I0 is the median of the observations, eI0 = 19.663 mA, and the MLE of σ is the average of the
absolute values of the deviations of the observations from the median, multiplied by

p
2, which

is eσ = 0.024mA. If the estimate of I0 is I , then the law of propagation of uncertainty provides
an exact evaluation of u(I), which is the same as the evaluation that corresponds to maximum
likelihood estimation, u(I0) = bσ/

p
5= 0.009 mA. However, if the estimate should be

eI0 =median{I1, . . . , I5}

instead, then the techniques described in JCGM 100:2008 are unable to evaluate u(eI0). The eval-
uation corresponding to the MLE for Laplace errors is u(eI0) = 0.023 8mA/

p
5= 0.011 mA. When

the median still seems to be the best choice as estimate of I0, but no specific distributional shape
can confidently be assumed for the measurement errors other than their distribution is symmet-
rical and centered at 0, then an evaluation of the associated uncertainty based on inversion of
the Wilcoxon test is recommended [141]: for the data considered in this example this produces
0.0115 mA/

p
5= 0.005 mA.

EXAMPLE 2 Lifetime of ball bearings — estimation and uncertainty evaluation

In example 2 of 11.3.3, estimating the expected lifetime, T = SΓ (1+1/A), reduces to estimating the
scale S and shape A of the Weibull model chosen for the inputs. The method of maximum likelihood
(and Bayesian estimation procedures) are able to take into account the information provided by
the four censored observations. The MLEs of S and A are the values that maximize

∑

i∈U

ln wS,A(Ri) +
∑

i∈C

ln(1−WS,A(Ri))

with respect to S and A, where wS,A and WS,A denote the probability density and the probability
cumulative distribution function of the Weibull distribution with scale S and shape A, U denotes
the set of indices corresponding to uncensored observations, and C denotes the set of indices cor-
responding to censored observations. The MLEs are bS = 111 million revolutions and bA = 1.34;
hence bT = 102 million revolutions. The approximate uncertainty evaluations associated with the
MLEs are u(bS) = 19 million revolutions and u(bA) = 0.26, and the correlation between them is
r(bS, bA) = 0.0966, computed as described in 11.9.6. Application of formula (13) in JCGM 100:2008
then yields u(bT ) = 17 million revolutions. The parametric statistical bootstrap evaluates the same
uncertainty at 20 million revolutions.

EXAMPLE 3 Mass fraction of tin — estimation and uncertainty evaluation

The DerSimonian-Laird estimate of the mass fraction of tin produced by the NIST Consensus Builder
[106, 107] with the inputs specified in example 3 of 11.3.3 is 10.01 mgg−1. The hierarchical
Bayesian procedure also implemented in the NIST Consensus Builder produced the same estimate.
The evaluation of the standard uncertainty associated with the DerSimonian-Laird estimate is
0.011 mgg−1. A 95 % coverage interval for the mass fraction of tin ranges from 9.99 mg g−1 to
10.04 mgg−1. The corresponding values produced by the hierarchical Bayesian procedure are
0.025 mgg−1 for the standard uncertainty and 9.96 mgg−1 to 10.06 mgg−1 for a 95 % coverage
interval. The Bayesian procedure yields considerably larger uncertainty evaluations than the Der-
Simonian-Laird procedure because it captures more accurately, and expresses more realistically, the
fact that the component of uncertainty attributable to differences between analytical methods is
evaluated based on a single degree of freedom [106].
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EXAMPLE 4 Amount fraction of N2O in southern oceanic air — estimation and uncertainty evaluation

The estimates of the coefficients of the cubic polynomial

A(r) = β0 + β1r + β2r2 + β3r3

that was selected as a model for the analysis function in the example of 11.4.3 are the values of the
coefficients β0, . . . ,β3 and of the true ratios ρ1, . . . ,ρ6 that maximize

6
∑

i=1

[lnφ((x i − A(ρi))/u(x i)− ln u(x i) + lnψ9((ri −ρi)/u(ri))− ln u(ri)],

where x1, . . . , x6 denote the amount fractions of N2O in the calibration standards, φ denotes the
probability density of the normal distribution with mean 0 and standard deviation 1, and ψ9 de-
notes the probability density of the Student’s t distribution with 9 degrees of freedom (because
the ratios for the standards are averages of 10 replicates). The estimates obtained by numerical
optimization using the Nelder-Mead algorithm as implemented in R function optim, are

bβ0 = 329.13nmol/mol, bβ1 = 24.928 nmol/mol,

bβ2 = −0.296 52nmol/mol, bβ3 = −0.19612 nmol/mol,

bρ1 = 0.972 39, bρ2 = 0.987 08, bρ3 = 1.006 5, bρ4 = 1.021 3, bρ5 = 1.0437,

bρ6 = 1.063.

The uncertainty associated with A(r) was evaluated using the Monte Carlo method described in
[73].

EXAMPLE 5 Barium in clay soil — estimation and uncertainty evaluation

The random effects model described in the example of 11.5.4 may be fitted to the data by any
one of several different methods. The conventional ANOVA approach to estimate τ and σ uses
the method of moments [18, example 2.1.2]: equating observed and expected mean squares, and
then solving for τ2 and σ2. Since this approach may produce a negative estimate for τ2 — com-
pare formula (5) in [159] — it is preferable to fit the model by restricted maximum likelihood
(REML) [150] (for example, as implemented in function lmer of R package lme4, available at
https://www.r-project.org/). For this data set, the REML estimates of τ and σ reproduce
the results of the conventional ANOVA, bτ = 5.3 mgkg−1 and bσ = 11 mgkg−1, which are denoted
by sbb and swithin in [159]. The REML procedure also produces an estimate Òω = 318mg kg−1 of
the measurand, and an evaluation of the associated standard uncertainty u(Òω) = 2mg kg−1. An
approximate, profile-likelihood 95 % coverage interval for τ ranges from 0 mgkg−1 to 9.8 mgkg−1,
thus confirming the conclusion of the conventional F -test enabled by the ANOVA, whose p-value
is 0.09, as already noted in the example under 11.5.4. (The profile likelihood for τ is its marginal
probability density evaluated at the maximum likelihood estimates of the other parameters in the
model (see [133], page 61).)

EXAMPLE 6 Calibrating a geodetic base line — estimation and uncertainty evaluation

The method of least squares amounts to choosing values for λ1, λ2, and λ3 that
minimize S(λ1,λ2,λ3) = (L1 − λ1)2 + (L2 − λ2)2 + (L3 − λ3)2 + (L4 − λ1 − λ2)2 +
(L5 − λ2 − λ3)2 + (L6 − λ1 − λ2 − λ3)2 with respect to λ1, λ2, and λ3. Com-
puting ∂ S(λ1,λ2,λ3)/∂ λ1 = 6λ1 + 4λ2 + 2λ3 − 2L1 − 2L4 − 2L6, and ∂ S(λ1,λ2λ3)/∂ λ2 and
∂ S(λ1,λ2λ3)/∂ λ3 similarly, and equating all to 0 leads to the following system of three simul-
taneous equations in three unknowns:

3λ1 + 2λ2 +λ3 = L1 + L4 + L6,

2λ1 + 4λ2 + 2λ3 = L2 + L4 + L5 + L6,

λ1 + 2λ2 + 3λ3 = L3 + L5 + L6.
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The solution is bλ1 = 27.22m, bλ2 = 33.08 m, and bλ3 = 25.30m. Therefore, the distance from A to D
is estimated asÒ∆= bλ1+bλ2+bλ3 = 85.59 m. Since the eigenvalues of the matrix of second derivatives
of S as defined above, evaluated at (bλ1, bλ2, bλ3), all are positive, the solution indeed corresponds
to a minimum. The adjusted observations (or, fitted lengths) are bL1 = 27.22 m, bL2 = 33.08m,
bL3 = 25.30m, bL4 = 60.30m, bL5 = 58.38m, and bL6 = 85.59 m.

Next, we compute a Type A evaluation of the uncertainty associated with Ò∆, the estimate of the
distance from A to D. First one computes the covariance matrix of (bλ1, bλ2, bλ3) using conventional
methods of linear regression [50] (for example, as implemented in function lm of ‘base’ R, available
at https://www.r-project.org/). Second, considering that∆= λ1 +λ2 +λ3 is a linear mea-
surement model of the sort considered in JCGM 100:2008, equation (13) may be used to obtain
u(∆) = 0.025 m with 3 degrees of freedom.

EXAMPLE 7 Pitot tube — estimation and uncertainty evaluation

Application of MCMC sampling (for example, as implemented in function metrop of R package
mcmc, available at https://www.r-project.org/), to the Bayesian model defined in example 1
of 11.8.5, produces a sample from the posterior distribution of v with mean 57.5 m/s and standard
deviation 0.4 m/s — a measurement result that, for this particular choice of prior distribution, is
statistically indistinguishable from the result obtained via the conventional analysis according to
JCGM 100:2008: v = 57.48 m/s and u(v) = 0.35 m/s [140, A.6].

EXAMPLE 8 Copper in wholemeal flour — estimation and uncertainty evaluation

The Huber M-estimator of location [80] (for example as implemented in function huberM of R
package robustbase, available at https://www.r-project.org/) provides a robust alterna-
tive to the arithmetic average as an estimate of ω that yields both an estimate 3.21 µg g−1 of that
mass fraction, and an evaluation 0.14 µgg−1 of the associated standard uncertainty. The Bayesian
model described in example 2 of 11.8.5 produces a posterior distribution for the true value of the
mass fraction whose mean, 3.22 µgg−1, is an estimate of the measurand ω, and whose standard
deviation, 0.15 µg g−1, is an evaluation of the associated standard uncertainty. These results are in
close agreement with the results of the classical robust analysis using the Huber M-estimator dis-
cussed above. Coverage intervals can also be derived from the posterior distribution: for example,
2.92 µg g−1 to 3.51 µg g−1 is a 95 % Bayesian coverage interval for the mass fraction of copper.

EXAMPLE 9 Temperature of a thermal bath — estimation and uncertainty evaluation The MLEs of
the parameters in the auto-regressive model described in the example of 11.7.3 are

bτ= 50.105 °C, bϕ1 = 0.41, bϕ2 = 0.42, σ = 0.002 °C.

They were computed using function Arima defined in package forecast (available at
https://www.r-project.org/) [82]. The same function also provides evaluations of the cor-
responding standard uncertainties

u(τ) = 0.001 °C, u(ϕ1) = u(ϕ2) = 0.09,

computed as described in 11.9.6. It should be noted that u(τ) is about three times larger than the
naive (and incorrect) uncertainty evaluation s/

p
100 = 0.0003 °C that would have been obtained

neglecting the auto-correlations, where s denotes the standard deviation of the 100 readings of
temperature listed in Table 8 of 11.7.3. According to the auto-regression used as a model for these
data, the correlations between the observations arise owing to a memory effect: the temperature at
time Ti is determined by the values of temperature measured during the previous two minutes, plus
a volatile (unpredictable, or ‘random’) measurement error whose standard deviation is 0.002 °C.
The state of thermal equilibrium is a bona fide measurand, characterized by the coefficients of the
auto-regression: in this case, the estimates of these coefficients correspond to a stationary process,
meaning that the level, magnitude, and pattern of the oscillations of temperature do not depend
on the time of the first observation.
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11.10 Model selection and model uncertainty

11.10.1 Whenever a statistical model is considered, a choice needs to be made about
the particular model to use (model selection), because in most cases several models can
be reasonable alternatives. In the example of 11.7, a normal auto-regression of order 2
was selected for the time series of observations of temperature, but several other ARIMA
models would be similarly reasonable.

11.10.2 Model selection typically involves making a compromise between the goodness
of fit of the model to the data, and the trustworthiness and fitness for purpose of the model
in the application where the results will be used. For example, in the context of calibration,
as discussed in the example of 11.4.3, a model that tracks all the values pertaining to the
standards very closely may be too sensitive to their peculiarities and not serve as a reliable
summary and useful generalization of the relationship that it strives to capture. The choice
of degree for the polynomial used for the analysis function illustrates the compromise
between achieving good fit and selecting a parsimonious model (usually a polynomial of
low degree).

11.10.3 Commonly used model selection criteria [25] include (i) the Akaike Information
Criterion (AIC) [1]; (ii) its version AICc [81] ‘corrected’ for the finite size of the data set
used to build the model; and (iii) the Bayesian Information Criterion (BIC) [149]. None of
these should be the sole guide used for model selection. Model selection criteria suggest a
reasonable compromise between goodness of fit and simplicity of the model. They should
always be supplemented with statistical examinations of residuals (differences between
observations and model predictions), for instance QQ-plots [160], and cross-validation
(to determine how well alternative models can predict observations that were not used in
the process of building them) [75,124].

EXAMPLE Temperature of a thermal bath — model selection

According to BIC, a normal auto-regression of order 2, often denoted by ARIMA(2,0, 0), is ‘best’ for
the time series of observations of temperature mentioned in the example in 11.7, among all auto-
regressive moving-average models with up to 5 coefficients besides a non-zero mean. (In general,
the notation ARIMA(p, d, q) denotes a time series model for the data after computing d differences,
comprising p auto-regressive terms and q moving average terms.) On the other hand, according to
AICc, the ‘best’ model is an ARIMA(1,0, 2) with non-zero mean [139].

11.10.4 Instead of selecting a particular model, several models may be used and the cor-
responding results combined into some sort of average (model averaging). This averaging
may be as simple as illustrated in the following example, or it may take into account how
likely a priori the different models are judged to be [33,65]. Furthermore, the uncertainty
surrounding model selection (model uncertainty) should be evaluated and propagated to
the results recognizing the several alternatives [30, 36], and become just another contri-
bution to the uncertainty to be associated with the estimate of the measurand.

EXAMPLE Copper in wholemeal flour — model averaging

In example 2 of 11.8, the normal model was discredited by the Anderson-Darling test, and a
Bayesian model was used instead that offers built-in protection against potential outliers. However,
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several other models would do likewise, and instead of selecting one, several may be employed
and the corresponding results averaged. For example: the Laplace model suggests the median,
3.39 µg/g with associated standard uncertainty 0.19 µg/g (computed using the non-parametric,
statistical bootstrap [53]); the Huber M-estimate of location is 3.21 µg/g with associated stan-
dard uncertainty 0.14 µg/g; the Hodges-Lehmann estimate [77] is 3.23 µg/g with associated stan-
dard uncertainty 0.17 µg/g (derived from the 68 % coverage interval obtained by inversion of the
Wilcoxon rank sum test [78]); and the aforementioned Bayesian model yields 3.22 µg/g with asso-
ciated standard uncertainty 0.15 µg/g. The weighted average of these four estimates, with weights
proportional to the reciprocals of their squared standard uncertainties, is 3.25 µg/g, with associated
standard uncertainty 0.17 µg/g (computed using equation (9) in [24]).

12 Assessing the adequacy of the measurement model

12.1 A measurement model is adequate if the estimate of the measurand obtained by
using it is corrected for all known effects, and the associated uncertainty reflects all factors
that could reasonably affect the estimate. If this is the case, values for the same measurand
obtained using alternative models (see 8.5) should agree within reported uncertainties. In
addition, the measurement model should be capable of providing estimates and associated
uncertainties for the entire range(s) of measurand values and values of the input quantities
for which it has been developed.

12.2 Experimental evidence of measuring system performance is the most general check
of adequacy of the model chosen. Such evidence is usually obtained when validating the
measurement procedure, or performing measurements in support of quality control and
quality assurance. There are different ways to assess by experiment the output of a mea-
surement model, such as

— participation in an interlaboratory comparison and use of the estimate and uncer-
tainty from the measurement model in the performance evaluation,

— use of a certified reference material (CRM) or a reference method to assess the per-
formance of the measurement procedure,

— comparison of the output of the measurement model with literature or reference
data.

By showing agreement between the measured and reference values within the respective
uncertainties, support is provided for the adequacy of that model. Similarly, unexpected
disagreement normally calls for further investigation and should result in improvements
to the preferred measurement model.

EXAMPLE Performance evaluation in an interlaboratory comparison

Computing an En or ζ score [88] from participation in a proficiency test facilitates assessing the
performance evaluation taking into account both the measured value and the stated measurement
uncertainty. Similarly, in key comparisons such an evaluation is facilitated by calculating degrees
of equivalence [19]. An unsatisfactory score can indicate an issue in the measurement model.

NOTE 1 Guidance on using CRMs is given in ISO Guide 33 [96].

NOTE 2 Depending on the kind of CRM used, adaptations to the measurement model can be nec-
essary, for example, because the form of the CRM can be different from the items subject to mea-
surement for which the measurement model has been developed.
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12.3 Supplementary to assessing experimentally the outputs of a measurement model
for adequacy, it can be helpful to assess targeted parts of the measurement procedure
separately, to assess aspects of the procedure, such as, but not limited to,

— the calibration function and (deviations from) linearity of the instrument,
— sampling,
— sample preparation,
— reproducibility effects.

The use of validation studies and quality control data can be helpful in making these as-
sessments.

12.4 Reference data (exact or otherwise) for comparison purposes is widely used [26].
‘Exact’ data can often be provided by inverting the proposed model to generate example
data from prescribed values for the measurand. This process provides reassurance that a
model is correctly implemented. Where it is possible to generate sample data from a more
complete model, or from data on well-characterized test items, demonstration that the
expected result is returned will provide additional confidence in the model actually used.
In many cases, example data and calculations are published in relevant measurement or
testing methods; comparison of calculated results with those in the respective standards
then provides evidence of model adequacy.

12.5 Assessing the adequacy over the ranges of input and output values requires verify-
ing the output using one or more of the methods described in this clause. For instance,
where a calibration function is to be used for measuring pH in the range 4 to 10, it should
be ensured that either a single function performs sufficiently well over this range, or that
alternative functions perform adequately (with appropriate calibration) over sub-ranges.
In assessing adequacy across a range or sub-range, it is usually sufficient to explore the
intended extremes and a small number of intermediate cases. Close attention should be
given to regions where modelling assumptions change. If the number of terms in a compu-
tational model is adjusted depending on a measured response, the adequacy of the model
should be confirmed near each such decision point. Consideration should be given to the
sensitivity of a measurement result to the choice of model [143], particularly in critical
applications. Also see 11.10.

NOTE It is not generally necessary for testing laboratories to confirm the adequacy of a calculation
procedure given in a standard test or measurement method. Such a procedure would imply an
underlying measurement model. Such a confirmation would have normally been undertaken by
the expert committee in developing a relevant documentary standard or have been established by
prior research.

12.6 Supplementary to the checks on the output of the measurement model, there are
several others that are especially helpful in verifying the appropriateness of the measure-
ment model. These activities include the following, which are discussed further in the
subsequent subclauses:

— Reviewing the contributions to the measurement model;
— Checking that a simplified model adequately reproduces the results of a more com-

plete model it approximates using, for instance, the target measurement uncertainty
for this purpose;
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— Confirming that the computer’s numerical accuracy is sufficient for the application;
— For models fitted to data, verifying the validity of the model and of the distribution

assumptions made;
— Obtaining evidence of model applicability from published research literature;
— Obtaining experimental evidence that the model performs adequately for its in-

tended use; and
— Confirming that uncertainties predicted by the model are consistent with the ob-

served performance of the measurement procedure.

12.7 The contributions to the measurement model should be reviewed. They include
contributions obtained from established scientific principles (see 7.1) and effects derived
from metrological considerations (see 9.2, clause 9 and annex C). The developed model
should be checked against the compiled list of contributory effects to assess that all mean-
ingful contributions have been taken into account (see 9.3 and E.1.1). In this review,
account should be taken of any prescribed target measurement uncertainty. Also the pos-
sibility of understated values for uncertainty contributions should be part of this review.

12.8 Where the proposed model is an intentional simplification of a more complicated
model that can also be implemented, comparison of results obtained by the two models will
provide an indication of the agreement between the two. Where measurement uncertain-
ties and differences in calculated values are small compared with the target measurement
uncertainty, the simplified model may be accepted as adequate. See 11.10.

12.9 Different mathematical formulations or solution methods can lead to results of dif-
ferent numerical accuracy due to the limitations of computer arithmetic, premature ter-
mination of iterative calculations or for other reasons. Confirming sufficient numerical
accuracy, often using reference or simulated data, can therefore be important when devel-
oping new implementations. Model choice for adequate numerical accuracy is discussed
in more detail in 8.6.

12.10 Research literature can provide evidence of the adequacy of a given model, some-
times over a particular domain. Literature may also be useful in establishing the limitations
of a suggested model.

13 Using the measurement model

13.1 General

13.1.1 The main use of a measurement model is to calculate an estimate of the mea-
surand and the associated uncertainty. Depending on the requirements, the uncertainty
can be provided as a standard uncertainty, a coverage interval for a stipulated coverage
probability, or both. Especially when using Monte Carlo or Bayesian methods, it can be
more appropriate to provide a (representation of) the probability distribution for the mea-
surand. The latter is especially true when the output of the measurement model is used in
a subsequent uncertainty calculation taking a probability distribution as input.
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13.1.2 Given values for the input quantities in the measurement model, the correspond-
ing value of the measurand is obtained by evaluating a formula or by solving an equation.
Some quantities can take complex values. There can be a single (scalar) measurand or
multiple measurands (vector measurand). The mathematical, statistical or numerical tools
applied for obtaining the estimate of the measurand and uncertainty evaluation depend
on the form of the measurement model.

13.1.3 The law of propagation of uncertainty holds exactly for a linear measurement
model, that is, a model that is linear in its input quantities, but not generally otherwise.
For a single output quantity, a linear measurement model takes the form

Y = c0 + c1X1 + · · ·+ cN XN , (27)

where c0, . . . , cN are exactly known constants. This expression is straightforwardly gen-
eralized to multivariate models, and to those involving complex quantities. Guidance on
how to use the law of propagation of uncertainty is given in JCGM 100:2008 for explicit
univariate measurement models [as in expression (1)] and in JCGM 102:2011 for other
forms, including multivariate measurement models.

13.1.4 A non-linear measurement model is a model that cannot exactly be expressed
in the form (27). With some degree of approximation, a non-linear model can be ex-
pressed locally in linear form in the neighbourhood of estimates x1, . . . , xN of the input
quantities. On the basis of this linear form the law of propagation of uncertainty can
be applied to yield an approximation to the standard uncertainty associated with the es-
timate y = f (x1, . . . , xN ) of the output quantity. The adequacy of this approximation
can be checked in any particular instance by applying the Monte Carlo method of JCGM
101:2008, 7, or JCGM 102:2011, 7 in a multivariate case. Annex F gives further details of
model linearization and provides a simple method (that is not foolproof) of checking the
approximation.

EXAMPLE Failure of the law of propagation of uncertainty to propagate uncertainty in a non-linear
model

Bromine has two stable isotopes, bromine-79 and bromine-81. Consider a dibromine molecule
(Br2) whose most abundant molecule is 79Br81Br (the other molecules being 79Br79Br and 81Br81Br).
The abundance of this molecule, having a mass of 160 Da, with respect to all molecules of Br2 is
given by the expression [120]

x160 = 2x79(1− x79).

The isotopic abundance x79 of bromine-79 varies naturally from 0.505 to 0.508. Consider that Br2
has been made from a slightly altered isotopic bromine with x79 = 0.500 and u(x79) = 0.005, and
the abundance x160 of 79Br81Br is required. In such a case, the application of the law of propagation
of uncertainty for the above measurement model yields

u2(x160) =

�

dx160

dx79

�2

u2(x79) = (2− 4x79)
2u2(x79).

In this instance, the law of propagation of uncertainty provides invalid results since it yields u(x160) =
0 when x79 = 0.500, regardless of the uncertainty associated with x79. The inadequate lineariza-
tion of this model as used by the law of propagation of uncertainty can be remedied by using
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the Monte Carlo method: by modelling x79 by a normal random variable, N(0.500, 0.0052), for
instance, x160 = 0.49995 with u(x180) = 0.00007 is obtained.

The issue can also be overcome by calculating non-symmetric approximations for the sensitivity
coefficients or by including higher-order terms [120].

13.2 Use of a model beyond the range for which it has been validated

The use of a measurement model for extrapolation beyond an interval over which it is
deemed valid is generally inadvisable (also see 5.8 and the example in 10.6.4). It is gen-
erally unsafe to fit an empirical or hybrid model to data and use the model beyond the
span of the fitted data. Extrapolation with purely empirical functions such as polynomials
and polynomial splines is particularly dangerous. Such functions can exhibit spurious be-
haviour beyond the span of the data they explain and should not be used for this purpose.
In certain circumstances, a theoretical model may be used with caution for extrapolation
beyond the span of the data that defines it when the model is judged to describe adequately
the phenomenon of interest.

EXAMPLE Isotope-based quantitation: use of theoretical and empirical models

In isotope-based quantitation, routinely employed in chemical measurement, the measurand is the
isotope amount ratio of a substance of interest (the analyte) in an ‘unknown’ sample. This ratio is
specified by a calibration function giving the relationship between isotope amount ratio and mass
ratio. The calibration function is provided by regression given a data set consisting of several pairs
of values. Each pair corresponds to a ‘known’ sample, for which a value of RAB, the isotope ratio
of the mixture, is observed (measured) corresponding to a value of q, the mass ratio of the sample
(analyte) A and the isotopically-labelled internal standard B. See the data points indicated by filled
circles in figure 9.

Figure 9: Isotope dilution theoretical (rational) model and empirical models fitted to calibration
data and used for prediction
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A feature that distinguishes isotope dilution from many other methods of analytical chemistry is
the inherently non-linear theoretical calibration function,

RAB =
a0 + a1q
1+ a2q

, (28)

which is a rational function having polynomial degree 1 in the numerator and in the denominator,
where a0, a1 and a2 are parameters calculated by regression from the provided data. Then, for a
sample having a specified value of mass ratio q, the corresponding value of RAB is determined from
the function (28). Accordingly, the calibration function given by expression (28) is an explicit uni-
variate model (see 13.3) in which RAB is the output quantity or measurand, and the input quantities
are q and the calibration parameters a0, a1 and a2.

Many current implementations of isotope dilution calibration either ignore the curvature of the
function (due to the presence of the term involving a2) or use instead an empirical model such as a
polynomial of degree 2 or 3 (see annex D). Such empirical models do not generally extrapolate well
beyond the interval spanned by the calibration data. Figure 9 shows the use of a linear polynomial
or straight line (corresponding to ignoring the term a2q), and quadratic and cubic polynomials
fitted to five calibration points (filled circles). It also shows the function (28) fitted to the same
data. The open circles correspond to two additional samples outside the span of the calibration
data. The advantage of the theoretical model over the candidate empirical models is evident in this
case. Further details are given in reference [132].

13.3 Explicit univariate measurement model

A measurement model taking the form (1) relating a single output quantity Y to the input
quantities X1, . . . , XN is termed univariate and explicit. Given values for the input quanti-
ties X1, . . . , XN , an explicit model enables the corresponding value of the output quantity
Y to be determined directly. This form of model is the simplest and can be handled by the
provisions of JCGM 100:2008 or JCGM 101:2008.

EXAMPLE Gauge-block measurement (also see the example in 6.2 and example 1 in 6.5)

The length of a nominally 50 mm gauge block is determined by comparing it with a known gauge-
block measurement standard of the same nominal length using a gauge block comparator. An
expression for the direct output of the comparison of the two gauge blocks is the difference

d = [1+ (αS + δα)θ]`− [1+αS(θ − δθ )]`S (29)

in their lengths, where

— ` is the length at 20 °C of the gauge block being calibrated,
— `S is the length of the gauge-block measurement standard at 20 °C as given on its calibration

certificate,
— αS is the coefficient of thermal expansion of the gauge-block measurement standard,
— δα = α− αs, where α is the coefficient of thermal expansion of the gauge block being cali-

brated,
— θ is the deviation in Celsius temperature from the 20 °C reference temperature of the gauge

block being calibrated, and
— δθ = θ − θS, where θS is the deviation in Celsius temperature from the 20 °C reference tem-

perature of the gauge-block measurement standard.

From expression (29) the output quantity ` can be expressed in terms of the N = 6 input quantities
d, `S, αS, δα, θ and δθ as the explicit univariate measurement model

`=
[1+αS(θ − δθ )]`S + d

1+ (αS + δα)θ
, (30)

the right-hand side of model (30) constituting the measurement function.
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13.4 Explicit multivariate measurement model

A measurement model taking the form

Y1 = f1(X1, . . . , XN ), . . . , Ym = fm(X1, . . . , XN ). (31)

where Y1, . . . , Ym are m output quantities, and f1, . . . , fm denote the m measurement func-
tions, is termed multivariate and explicit. This form of model can be handled by the pro-
visions of JCGM 102:2011.

EXAMPLE Resistance and reactance of a circuit element

The resistance R and reactance X of a circuit element are given by JCGM 100:2008, example H.2:

R=
V
I

cosφ, X =
V
I

sinφ. (32)

Here expression (32) is the explicit multivariate measurement model for resistance and reactance
in which V denotes potential difference, I denotes current and φ denotes phase angle. There
are N = 3 input quantities, V , I and φ, and m = 2 output quantities R and X . The symbol X ,
conventionally denoting reactance, is not to be confused with X1, X2, etc., the generic symbols for
the input quantities.

13.5 Implicit univariate measurement model

A measurement model taking the form

h(Y, X1, . . . , XN ) = 0, (33)

where Y is a scalar output quantity, and h denotes a function of Y and the input quan-
tities X1, . . . , XN , is termed univariate and implicit. Given values for the input quantities
X1, . . . , XN , the corresponding value of the output quantity Y cannot be calculated directly
from an implicit model. Specifically, equation (33) cannot readily or numerically stably
be represented in terms of a measurement function. It is generally solved numerically, of-
ten by using an iterative procedure, to obtain a value of Y corresponding to given values
of X1, . . . , XN . This form of model can be handled by the provisions of JCGM 102:2011,
which covers a generalization of the univariate form of the law of propagation of uncer-
tainty given in JCGM 100:2008, 5.1 and 5.2 and a Monte Carlo method.

NOTE 1 There is not a unique way to write an implicit measurement model. For instance, in
place of equation (3) in example 2 in 7.2.1 the measurement model given by equating to zero the
difference between the left- and right-hand sides of expression (3) could be used, which will then
take the form (33). The numerical efficiency of the solution of the measurement model equation
depends on the choice made.

NOTE 2 It is assumed that the implicit univariate measurement model (33) can be solved uniquely
for the value of Y corresponding to given values of X1, . . . , XN close to their estimates.

EXAMPLE Shell thickness of microscopic spherical particles

A practical approach to determining the overlayer thickness of samples of microscopic spherical
particles is to calculate an equivalent planar thickness T and multiply it by a geometrical correction

© JCGM 2020 – All rights reserved



64 JCGM GUM-6:2020

term [151]. An implicit measurement model of the relationship between the measurand T and
experimentally measured independent quantities A and B is [42]

h(T, A, B)≡ e−T − Ae−BT − 1= 0. (34)

In equation (34), A and B are the input quantities and T is the output quantity or measurand. It is
not possible to re-express T explicitly in terms of A and B. Using the provisions of JCGM 102:2011,
given estimates bA and bB of A of B, this equation can be solved numerically for the corresponding
estimate bT of T . Moreover, the standard uncertainty u(bT ) can be obtained by propagating the
standard uncertainties associated with bA and bB.

13.6 Implicit multivariate measurement model

A measurement model taking the form

h1(Y1, X1, . . . , XN ) = 0, . . . , hm(Ym, X1, . . . , XN ) = 0, (35)

implicitly defining the output quantities Y1, . . . , Ym in terms of the input quantities
X1, . . . , XN , is termed multivariate and implicit. Typically, equation (35) cannot readily
or numerically stably be represented in terms of measurement functions f1, . . . , fm as in
the explicit multivariate case in 13.4. It is generally solved numerically, typically by using
an iterative procedure, to obtain values of Y1, . . . , Ym corresponding to values of X1, . . . , XN .
This form of model can be handled by the provisions of JCGM 102:2011, which covers a
multivariate generalization of the form of the law of propagation of uncertainty given in
JCGM 100:2008 and a Monte Carlo method.

NOTE It is assumed that the implicit multivariate measurement model (35) can be solved uniquely
for values of Y1, . . . , Ym given values of X1, . . . , XN close to their estimates.

EXAMPLE Pressures generated by a pressure balance accounting for correlation

A generalization of the example of the pressure balance in example 2 in 7.2.1 is as follows. For
i = 1, . . . , m, let pi denote the generated pressure for applied mass mi and temperature t i , with
A0, λ, α, ρa, ρw and g as before. An estimate of each pi is obtained by solving an equation of
the form (3) given estimates of A0,λ,α, t i , mi ,ρa,ρw and g. However, the quantities represent-
ing the generated pressures are not independent because they all depend on the quantities A0, λ,
α, ρa, ρw and g. The measurement is described by a multivariate measurement model in which
A0,λ,α, t1, . . . , tm, m1, . . . , mm,ρa,ρw, g are 2m+6 input quantities, p1, . . . , pm are m output quan-
tities, and the measurement model takes the form

hi(Y1, . . . , Ym, X1, . . . , XN ) = A0pi(1+λpi) [1+α(t i − tref)]−mi

�

1−
ρa

ρw

�

g = 0, i = 1, . . . , m,

where tref is a reference temperature, 20 °C, say [113].

13.7 Measurement models involving complex-valued quantities

A complex measurement model involves at least one complex-valued quantity. Complex
models can also be classified as univariate and explicit [of the form (1)], multivariate and
explicit [of the form (31)], univariate and implicit [of the form (33)], and multivariate
and implicit [of the form (35)]. For guidance on working with complex numbers in the
context of measurement models see JCGM 102:2011, 6.4.
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EXAMPLE Reflection coefficient measured by a calibrated microwave reflectometer

The (complex) reflection coefficient Γ measured by a calibrated microwave reflectometer, such as
an automatic network analyser (ANA), is given by

Γ =
aW + b
cW + 1

, (36)

where W is the (complex-valued) quantity representing the uncorrected reflection coefficient and
a, b and c are (complex-valued) calibration coefficients characterizing the reflectometer [67,103,
154].

There are four (complex-valued) input quantities a, b, c, W and a single (complex-valued) output
quantity Γ . Expression (36) defines an explicit univariate complex measurement model, the right-
hand side constituting the measurement function.
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A Glossary of principal symbols

The following principal symbols are used throughout the document:

c sensitivity coefficient (first partial derivative)
f measurement model (explicit form)
h measurement model (implicit form)
m number of output quantities
N number of input quantities
Q input quantity, used to calculate another input quantity (X )
s standard deviation
u standard uncertainty
X input quantity
x estimate of an input quantity
Y output quantity
y estimate of an output quantity

Other symbols, particularly those appearing in the examples, are introduced as they occur.
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B Modelling of dynamic measurements by linear time-invariant
systems

B.1 General

B.1.1 Dynamic measurements are measurements in which the measurand and at least
one of the input quantities are dynamic quantities, that is, are time-dependent, and the
behaviour of the measuring system depends on its dynamic characteristics. An important
aspect is that the relation between dynamic quantities is usually described by methods
from signal processing [131] and systems theory [112] rather than by an algebraic equa-
tion. By means of transforming the continuous-time models to discrete time, some models
of dynamic measurements can, however, be cast as multivariate models that can be han-
dled with JCGM 102:2011. This clause provides introductory material for continuous and
discrete time dynamic models and refers to relevant literature resources where applicable.

B.1.2 Dynamic measurements can be found in many fields of metrology, such as acceler-
ation measurement [116], dynamic force measurement [105], dynamic pressure measure-
ment [49], hydrophone measurements [161] or ultra-fast oscilloscope measurements [74].
In all these applications, the relation between the input and the output of the measur-
ing system is modelled by a linear time-invariant (LTI) system with linearity and time-
invariance as defined in B.2.2 and B.2.3, respectively. In a sense, LTI systems can be seen
as the simplest extension of the measurement model of JCGM 100:2008 to dynamic input
and output quantities. For general non-linear dynamic systems, see, for instance, [148].

B.2 Continuous-time models

B.2.1 The relation between the input signal Y (t) and output signal X (t) of a dynamic
system is denoted mathematically as

X (t) =H [Y (t)] ,

where H denotes the model of the dynamic system.

B.2.2 A dynamic system model is called a linear system if it is linear in its dynamic inputs.
That is, for dynamic quantities Y1(t) and Y2(t) with real-valued scaling factors c1 and c2 it
holds that

H [c1Y1(t) + c2Y2(t)] = c1H [Y1(t)] + c2H [Y2(t)] .

The linearity of the system in the dynamic quantities should not be confused with linearity
in the non-dynamic system parameters.

B.2.3 A system is called time-invariant when the dynamic system model does not change
with time. That is, provided that

H [Y (t)] = X (t),

a time shift in Y (t) results in the same time shift in X (t):

H [Y (t − t0)] = X (t − t0).
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B.2.4 For LTI systems the relation between the system input Y (t) and system output X (t)
is given by the convolution equation [131]

X (t) = (H ∗ Y )(t) =

∫ ∞

−∞
H(t −τ)Y (τ)dτ,

where H(t) denotes the impulse response of the dynamic system H(·).

B.2.5 Alternatively, the relation between system input and system output can be mod-
elled by a linear state-space system model with system matrices A, B,C and D:

dZ(t)
dt

= AZ(t) + BY (t),

X(t) = C Z(t) + DY (t).

B.2.6 Mathematically, an LTI system H can be represented in different equivalent forms
(for instance, [112, 131]). The basic form is the system’s transfer function H(s) in the
Laplace domain with complex-valued s from which all other representations can be de-
rived. For instance, the system’s representation in the frequency domain by its frequency
response H(jω) is obtained by setting s = jω in the transfer function. For its representation
in the time domain by its impulse response H(t), the inverse Laplace transform is applied
to the transfer function.

NOTE 1 Consequently, the result of a calibration of an LTI system can be a transfer function, fre-
quency response or impulse response. The result can be parametric or non-parametric.

NOTE 2 The imaginary unit i as used elsewhere in this document is usually denoted by j in signal
analysis and related fields.

B.3 Discrete-time models

B.3.1 In this subclause it is assumed that an analogue-to-digital conversion of the dy-
namic system output X (t) results in an equidistant discrete-time dynamic quantity X =
(X (t1), . . . , X (tM ))>. The corresponding dynamic measurand is the discrete-time dynamic
quantity Y = (Y (t1), . . . , Y (tM ))>.

B.3.2 An implicit measurement model in the time domain is given by

X (t j)− (H ∗ Y )(t j) = 0, j = 1, . . . , M ,

where H denotes the dynamic system model’s impulse response.

An implicit measurement model in the frequency domain is given by

X ( f j)−H( f j)Y ( f j) = 0, j = 1, . . . , M , (37)

where H in this context denotes the dynamic system model’s frequency response.
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B.3.3 An explicit model in the time domain can be derived by constructing a digital de-
convolution filter designed such that the input of the filter is the observed system output
X and the filter output is an approximation to the dynamic measurand Y [56]. Therefore,
the filter’s frequency response equals the reciprocal of the system’s frequency response up
to a chosen frequency. Above that frequency the filter resembles a low-pass behaviour,
attenuating high-frequency noise. The explicit measurement model is

Y (nTs) =
Nb
∑

r=0

Br X ((n− r)Ts)−
Na
∑

r=1

Ar Y ((n− r)Ts) +∆(nTs), (38)

where Ts denotes the duration of the sampling interval. The filter coefficients
A= (A1, . . . , ANa

)> and B = (B0, . . . , BNb
)> are determined from knowledge about the sys-

tem model using, for instance, methods such as least squares adjustment [56]. The addi-
tional term ∆(nTs) on the right-hand side of expression (38) denotes the correction for a
time-dependent error caused by the deconvolution filter used [59]. For the propagation
of uncertainty for such measurement models, the methodology of JCGM 102:2011 can be
applied [57,64,115].

EXAMPLE For an LTI measuring system calibrated in terms of its frequency response H( fr) for
frequencies f1, . . . , fM , an Lth order finite-impulse-response (FIR) filter with filter coefficients A =
(A0, . . . , AL)> is designed such that with radial frequencyωr = 2π fr its frequency response FA(e jωr/Ts)
satisfies [64]

H( jωr)FA(e
jωr/Ts)≈ 1.

for all ωr ≤ ω̄up and zero beyond that frequency. Thus, the digital filter approximates the inverse
of the system model in the frequency region [0, ω̄up] and attenuates frequency components for
larger frequencies. The attenuation of high-frequency components is necessary in order to avoid
otherwise strong noise amplification. Such attenuation can be achieved, for instance, by designing
an FIR filter that mimics the inverse of the system model and which is then applied in cascade with
an FIR low-pass filter. The measurement model is

Y (tn) =
L
∑

r=0

Ar X (tn−r).

With a = (a0, . . . , aL)> denoting the estimate of the FIR filter coefficients with associated covariance
matrix Ua, the standard uncertainty u(yn) associated with the estimate yn of the measurand at time
instant tn is given by

u2(yn) = a>U x (n)a+ x>(n)Uax (n) + Tr(U x (n)Ua),

where U x (n) denotes the covariance matrix associated with x (n) = (x(tn), . . . , x(tn−M ))> and Tr()
denotes the trace of a matrix.

B.3.4 An explicit model in the frequency domain can be derived by transforming the
implicit model (37) and multiplying by the frequency response of a chosen low-pass filter
HL( f ) for the attenuation of high-frequency noise:

X ( f ) =
Y ( f )
H( f )

HL( f ),

or by carrying out a Tikhonov regularization approach [157]. For the propagation of un-
certainty for such measurement models, the methodology of JCGM 102:2011 can be ap-
plied [58,74].
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EXAMPLE For the characterization of medical ultrasound devices, definite ultrasound pulse shapes
are measured using hydrophones. Due to the imperfect dynamic behaviour of most hydrophones,
a correction for the influence of the measuring device has to be made [161]. For instance, based
on the calibrated frequency response of the hydrophone, a deconvolution in the frequency domain
can be carried out resulting in the measurement model

Y ( fr) =
X ( fr)
H( fr)

HL( fr) =
X ( fr)
eH( fr)

, r = 1, . . . , M , (39)

with X ( fr) and Y ( fr) at frequencies f1, . . . , fM denoting the discrete Fourier transform of X =
(X1, . . . , XM )> and Y = (Y1, . . . , YM )>, respectively, and HL( fr) the frequency response of a low-
pass filter chosen for noise attenuation. Y ( fr), X ( fr) and eH( fr) are complex-valued quantities.
With ℜ and ℑ denoting real and imaginary parts, respectively, the measurement model (39) can be
written as

Y ( fr) =
[ℜX ( fr)ℜ eH( fr) + ℑX ( fr)ℑ eH( fr)] + j[−ℜX ( fr)ℑ eH( fr) + ℑX ( fr)ℜ eH( fr)]

[ℜ
eH( fr)]2 + [ℑ eH( fr)]2

,

r = 1, . . . , M .

The measurement model is thus multivariate and JCGM 102:2011 can be applied for the prop-
agation of uncertainty [58]. Figure 10 shows the resulting estimate y = (y1, . . . , yM )> and its
associated point-wise standard uncertainties u(y1), . . . , u(yM ) in the time domain after application
of the inverse discrete Fourier transform with propagation of uncertainty. Note that as for equation
(38) account has to be taken of the regularization error [59].

Figure 10: Estimate and associated point-wise standard uncertainties for the hydrophone pressure
input signal (solid line) and the values obtained with a reference instrument (broken line)
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C Modelling random variation

C.1 General

C.1.1 Random variation

Variation is present in most sets of observations. Some variation arises from effects that can
be measured and a correction made. Some variation, however, is unpredictable and cannot
be corrected. Variation sometimes arises only from the accumulation of small fluctuations
in measurement conditions, test material or other phenomena. In other cases, such as
radiation counting, it can be a fundamental feature of the system under consideration. This
unpredictable variation is usually regarded, and modelled, as random variation. Because
of the presence of random variation, all complete measurement models should include at
least some terms representing random variation.

C.1.2 Considerations in modelling random variation

Considerations in modelling random variation include:

— Random variation in observations of an input quantity necessarily leads to random
variation in corresponding values of the measurand. Random variation can therefore
often be modelled as effects associated with individual input quantities or as an effect
associated with the measurand, leading to an important choice in modelling;

— Random variation in repeated observations will be influenced by any random vari-
ation that occurs in the input quantities during the particular set of measurements.
However, not all input quantities necessarily vary during a given set of measure-
ments; some may even be constant. The variation in a particular set of observations
will therefore usually include the variation in only some of the input quantities. Con-
siderable care should therefore be taken to avoid ‘double-counting’ or omission of
some random effects;

— Random variation often varies in scale depending on the time period over which
variation is observed. Models may need to provide for multiple random effects in
order to model the effect of variation over different time scales;

— Random effects need not be independent, making it necessary to allow for covari-
ance; and

— The number of instances of each random effect depends on the particular experi-
mental design used for the measurement. A complete model for random variation
should therefore be specific to a particular experimental design.

C.2 Including random variation in a measurement model

C.2.1 Options for including random variation

The simplest method of including random variation explicity in a measurement model is to
introduce a term representing the effect of each source of random variation or embodying
a combination of sources of random variation. There are two broad options for including
random variation (see C.1.2), which can be regarded as extremes of a continuum. One
option is to associate random variation with each individual input quantity (see C.2.2).
The other extreme is to associate all random variation with the measurand (see C.2.3).
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C.2.2 Random variation associated with an existing input quantity

When random variation is associated with an existing input quantity in the model, it often
suffices to include the random effect only in the probability distribution for that quantity.
This extension can be as simple as increasing the variance associated with an existing
probability distribution; the new random effect is then treated as an additional contribution
to the uncertainty in a particular input quantity. More generally, a new random effect can
be included as a new term to the model. For instance, a simple approach is to include
an additive term with an expected value of zero and specify an appropriate probability
distribution and its parameters. The examples in this subclause illustrate these two options,
starting with the explicit identification of a new random effect.

EXAMPLE 1 Adding a random effect to a simple calculation of concentration

A simple model for the concentration x of a contaminant in drinking water is

x =
Ix

Iref
xref, (40)

where Ix is the chromatographic peak area observed for a known volume of the test material, xref
is the (known) concentration of a reference solution and Iref is the chromatographic peak area for
the same volume of the reference solution. To allow explicitly for random variation in, say, the
observed peak area for the test item, one simple extension to the model might be:

x =
(Ix + εx)

Iref
xref (41)

with

εx ∼ N(0,σ2
I ). (42)

This model indicates that random variation in the observed peak area is modelled as an additive
effect on peak area with a normal distribution, centred at zero and with variance σ2

I . Note that
the complete statistical model, (41) together with (42), includes a statement about the probability
distribution.

EXAMPLE 2 Simplified inclusion of a random effect for an existing input quantity

Example 1 in this subclause can be simplified. Instead of including the new, zero-centred term
εx , the probability distribution can be associated directly with the peak area Ix . The model then
becomes

x =
Ix

Iref
xref

(which appears identical to the unmodified model) with

Ix ∼ N(µI ,σ
2
I ),

where µI is the (true) mean value for the peak area. In simple cases the observed value can be
inserted into the calculation in place of the true value µI , making this representation essentially
equivalent to the statistical model (41) and (42).

The model has been simplified for clarity. In practice, the true value for a peak area is of little
interest. A more complete statistical model would show that the peak area Ix is proportional to
the true concentration µx of interest. If the model is rewritten in this way, it can be seen as an
implicit statistical model requiring a solution for µx , from which the model (40) follows to a good
approximation when the variances are small.
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C.2.3 Random variation as an effect associated with the measurand

C.2.3.1 It can be convenient to treat random variation as a direct effect on observed val-
ues, instead of as a set of effects on individual input quantities. Sometimes, proceeding
in this way is a matter of modelling convenience, for instance, because it is more straight-
forward to study the dispersion of the observations than to examine each input quantity
separately. In other circumstances, the dispersion of the observations is found to be greater
than can be accounted for by the known variation in input quantities, and this excess vari-
ation needs to be taken into account in evaluating uncertainty. Both situations can be
addressed by associating one or more sources of random variation with the measurand,
rather than with an individual input quantity.

EXAMPLE The effect of random variation in ambient laboratory temperature on a measured value

Ambient laboratory temperature can influence a measurement in a number of ways including the
introduction of a random effect. This effect could be due to random fluctuations in the labora-
tory temperature affecting the thermal properties of electrical detectors (noise floor, etc.) used by
a measuring system. Such a random effect cannot easily be represented mathematically. How-
ever, laboratory experiments can be used to evaluate the uncertainty due to these random ambient
temperature variations. For instance, if several repeated determinations are made over a suitable
period of time (during which the laboratory temperature fluctuates in its usual way), then the set
of determinations can be analyzed statistically and included as a component to the overall uncer-
tainty in the measurement. Further, approximations to sensitivity coefficients can be determined
empirically (see JCGM 100:2008, 5.1.4).

C.2.3.2 The simplest extension to a model is, as before, to include an additive effect with
mean zero. This extension is most useful where the dispersion of observations is largely
independent of the value of the measurand over the range of interest.

EXAMPLE Random variation associated with an existing input quantity: alternative representation

In example 1 in C.2.2, an alternative representation is

x =
Ix

Iref
xref + εx

with

εx ∼ N(0,σ2
x)

in which σx includes all sources of random variation under a particular set of conditions of mea-
surement.

C.2.3.3 When the standard deviation is known to be approximately proportional to the
measured value over the relevant range of values, then it can be useful to choose a mul-
tiplicative term rather than an additive term. The new term is given a mean of 1 and a
standard deviation equal to the relative standard deviation of the observations. Also see
10.3.4. Treating random effects as additive or multiplicative leads to different models.
The output of these models is nearly equivalent for small dispersion (for instance, rela-
tive standard deviation much less than 0.1). In general, however, different calculations
are required to obtain unbiased estimates and, further, the probability distributions will be
different for the two models.
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EXAMPLE Model including random effect with approximately constant relative standard deviation

Continuing the example in C.2.3.2, a simple model that includes a random effect with approxi-
mately constant relative standard deviation is

x =
Ix

Iref
xrefFσ

with

Fσ ∼ N
�

1, (σx/µx)
2�

in which, again, the dispersion includes all sources of random variation under particular conditions
of measurement.

C.2.3.4 As indicated in C.1.2, when random variation is modelled as an effect associ-
ated directly with the measurand, considerable care should be taken in the treatment of
uncertainties associated with individual input quantities to ensure that effects are neither
counted twice nor omitted. Particular issues that should be considered include:

— When an input quantity, say A, is measured once (including a single average of sev-
eral observations) for every measured value of the measurand, the term representing
variation in observations of A under repeatability conditions can be associated either
with the input quantity or with the output quantity, but not with both; and

— When the random variation associated with the output quantity relates to repro-
ducibility conditions, it is important to be aware that some, or even all, contribu-
tions to the standard uncertainties associated with individual input quantities can
appear in the observed reproducibility standard deviation. For instance, variation in
ambient temperature (an effect that can be important in evaluating the uncertainty
associated with measured volumes, for instance) will appear in a reproducibility
standard deviation over sufficient time. In such circumstances, those contributions
should not be included in the uncertainty associated with those input quantities as
well as appearing implicitly in a random effect associated with the observation.

NOTE The fact that reproducibility conditions can lead to random variation that includes most
effects on the measurand value underlies the concept of the ‘top-down’ approach to uncertainty
evaluation, considered further in C.5.2.

C.3 Multiple sources of random variation

Frequently, more than one cause of random variation can be identified; for instance, vari-
ation in environmental conditions over time and change in (say) operator might both
be modelled as random effects. It is often useful to separate short-term variation (typ-
ically within a measurement run) from longer-term variation. Such separation ensures
that the effect of averaging is properly reflected in the uncertainty evaluation. These sep-
arately identified sources of variation are common features of statistical models, which
are straightforwardly extended to include the effects (even multiple sources) of random
variation as further terms in the model.

EXAMPLE Separating ‘within-run’ and ‘between-run’ effects
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It can be useful to recognize that observations obtained over a short period (a single measurement
run or day) typically vary much less than observations obtained from different runs. A simple
extension to the model allows for a second such ‘random effect’:

X = µ+δrun + ε, (43)

where δrun is a ‘between-run’ term, with its own probability distribution, having mean (usually
zero) and variance that can be characterized by statistical methods such as analysis of variance.

NOTE 1 Often, a model such as (43) can be considered ‘hierarchical’ in the sense that all measured
values within one run are subject to the same ‘run’ error; the error term ε is ‘nested’ within the run.
Although it is perfectly possible to have other structures for random effects (for instance, the same
two instruments could be used to measure the same material on two different days, forming a
‘crossed’ design), uncertainties (and associated degrees of freedom [91, definition 2.54]) can be
simpler to handle in the case of a hierarchical model.

NOTE 2 ISO 21748:2016 [90] gives some guidance on the use of hierarchical (nested) models for
uncertainty evaluation; some simple ‘crossed’ designs are addressed by ISO/TS 17503 [98]. Both
give information on the associated degrees of freedom.

C.4 Asymmetrically distributed effects

Additional care should be taken where a probability distribution for a random effect is
asymmetric or where the measurement model is non-linear in a quantity associated with
an otherwise symmetric random effect. In these cases, random variation often leads to
bias in the measured value and the very simple model extension given in clause C.3 can
be inappropriate. It is then much better to express the model as a statistical model for the
data-generating process (see clause 11) and consider how best to obtain estimates of the
parameters of the probability distribution that represent the desired measurement result.
Sometimes the bias resulting from an asymmetric distribution can conveniently be ad-
dressed by including a correction (with associated uncertainty) based on the dispersion of
the random effect; the principle is identical to the treatment of an asymmetric effect given
in JCGM 100:2008, F.2.4.4. A more general alternative is to solve the resulting implicit
model directly, using (for instance) maximum-likelihood [133] or Bayesian methods [71].

C.5 Use of reproducibility studies

C.5.1 A particular case of models that combine essentially all random variation effects
into a small number of random effects associated with the measurand is the set of mod-
els used for examining the repeatability and reproducibility of measurement procedures.
These models focus on random variation in the measurand without separating the effects
associated with individual input quantities.

C.5.2 One application of models of this type has been described as the ‘top-down ap-
proach’, a concept first introduced in a paper by the Analytical Methods Committee of the
UK Royal Society of Chemistry [3] (also see E.1.1). The top-down approach is based on
the principle that the reproducibility standard deviation obtained in a collaborative study
is a valid basis for measurement uncertainty evaluation [90, annex A.2.1]. See C.5.3.
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This approach is widely used in measurement and testing, where it is accepted that a suit-
ably representative standard uncertainty can be obtained by that approach. Measurements
made in different laboratories, at different times, with different instruments and personnel
are carried out under a well-defined reproducibility condition of measurement. This ap-
proach is sometimes known as the ‘pure top-down approach’. An instance of the use of the
top-down approach in food analysis is available [119], and recommendations for relevant
terminology in measurement uncertainty in chemistry have been discussed [43].

C.5.3 In the implementation of the top-down approach given in ISO 21748:2016, the
basic statistical model [90,92] for a measurement is (following the nomenclature of refer-
ences [90,92,93])

Y = m+ B + E,

where Y is the quantity measured by a laboratory, m is the ‘level’ of the measurement (or
the ‘general mean’ of Y ), B is the laboratory systematic error under repeatability condi-
tions, assumed to be normally distributed with expectation zero and unknown standard
deviation σL, and E is the random error under repeatability conditions, assumed to be
normally distributed with expectation zero and unknown standard deviation σW.

NOTE 1 The value of the laboratory systematic error B is considered to be constant during any set
of observations obtained under repeatability conditions, but to differ in general for observations
obtained under other conditions. The variance of B is called the between-laboratory variance.

NOTE 2 The value of the random error E is considered to be different for every observation of Y .
The variance of E is called the within-laboratory variance.

NOTE 3 Estimates s2
L and s2

r of, respectively, σ2
L and σ2

W are obtained in an inter-laboratory or
collaborative study. s2

r is called the repeatability variance.

NOTE 4 The standard uncertainty associated with a value y of Y is then given by

u2(y) = s2
L + s2

r ≡ s2
R.

s2
R is called the reproducibility variance.

C.5.4 In some collaborative studies the measurement model is extended to

Y = µ+δ+ B + E

with bµ, the certified value of the quantity being measured, constituting an estimate of µ
with associated standard uncertainty u(bµ), and bδ, the bias of the measurement method,
constituting an estimate of δ with associated standard uncertainty u(bδ).

NOTE The standard uncertainty associated with a value y of Y is then given by

u2(y) = u2(bµ) + u2(bδ) + s2
R.

C.5.5 In practice sR and u(bδ) might not describe the variability of the measurand arising
from all effects that influence the measurement. Some important effects might be missing
from the collaborative study. If X i , i = 1, . . . , n, with estimates x i and associated standard
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uncertainties u(x i), are quantities describing additive effects on which the measurand de-
pends, a model for the measurement is

Y = µ+δ+
n
∑

i=1

ciX i + B + E, (44)

where ci is the sensitivity coefficient for X i .

NOTE The measurand Y in model (44) depends linearly on the input quantities. A more general
form is

Y = µ+δ+ f (X1, . . . , Xn) + B + E,

in which f (X1, . . . , Xn) is a single additive effect depending non-linearly on the quantities X1, . . . , Xn.
The standard uncertainty associated with an estimate of Y is obtained by linearizing the model (as
in JCGM 100:2008), if it is legitimate to do so, or applying a Monte Carlo method (as in JCGM
101:2008).
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D Representing polynomials

D.1 A polynomial of degree n can be expressed as

pn(X ) = a0 + a1X + a2X 2 + · · ·+ anX n =
n
∑

j=0

a jX
j =

n
∑

j=0

a jφ j(X ),

where φ j(X ) = X j are the so-called monomial basis functions.

D.2 While the description of polynomials in terms of monomial basis functions makes
clear the nature of polynomial functions, the use of the monomial basis in numerical com-
putation can lead to numerical difficulties. A first difficulty is that for values of the variable
X appreciably greater than one in absolute value, numerical values of the terms X j become
larger as j increases. This difficulty is addressed by working with a normalized variable V .
For X taking values within the interval [xmin, xmax],

V =
2X − xmin − xmax

xmax − xmin
,

and all its powers lie in the interval [−1, 1]. For polynomials of small degree (n≤ 4, say),
this normalization is sufficient to avoid most numerical difficulties.

D.3 The second difficulty arises from the fact that, especially for large j, the basis function
φ j looks very similar to φ j+2 in the interval [−1,1]. Figure 11 (left) shows the basis
functions φ2 j = X 2 j for j = 1,2, 3,4. This similarity implies numerical ill-conditioning
that worsens rapidly as the degree increases and the variable values move further from
zero and is the reason why polynomials are sometimes thought to be of very limited use
because of problems of numerical reliability. In fact, it is their representation (that is,
parametrization) in terms of the monomial basis functions that leads to such problems,
rather than polynomials per se.

Figure 11: The monomial functions X 2 j , j = 1,2, 3,4, on the interval [-1, 1] (D.3) and (right) the
Chebyshev polynomials T j(V ), j = 2, 3,4, 5 (D.4)
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D.4 Alternative representations can be obtained by using basis functions with better prop-
erties. The Chebyshev polynomials T j(V ) are one such set of basis functions and have the
property that they are orthogonal to each other on the interval [−1,1] with respect to the
weighting function

w(V ) =
1

(1+ V 2)1/2
.

They are defined for V ∈ [−1, 1] by

T0(V ) = 1, T1(V ) = V, T j(V ) = 2V T j−1(V )− T j−2(V ), j ≥ 2.

Chebyshev polynomials can also be defined using the trigonometrical relationship

T j(cosθ ) = cos jθ , cosθ = V.

Figure 11 (right) shows T j(V ), j = 2,3, 4,5.

D.5 A further advantage of the Chebyshev representation is that due to the near orthog-
onality of the Chebyshev basis the covariance matrix associated with estimated Chebyshev
coefficients tends to be much closer to a diagonal matrix than that for the monomial form.

D.6 Polynomials of moderate to high degree fitted to data may oscillate spuriously in the
interval of concern. Such behaviour is undesirable when a smooth underlying relationship
is expected. The reason for such oscillation is often an unsuitable choice of values of the
independent variable (such as equispaced). Generally, a preferred choice is the extrema of
the Chebyshev polynomial of degree n−1, transformed linearly to the interval of concern,
where n is the greatest degree of polynomial to be considered [158]. For polynomial
regression using m equispaced points, such undesirable effects tend to be reduced when n
is taken to be the largest integer no greater than 1.4

p
m. See table 9.

Table 9: Relation between m, the number of calibration points, and recommended maximum poly-
nomial degree n for approximately equispaced stimulus values

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n 1 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6

NOTE 1 The expression 1.4
p

m is a slightly conservative form of the more complicated expression
given by comparing the spacing interval for m equispaced points over [−1,1] with the distance
between the closest extrema of Tn.

NOTE 2 Operational considerations can suggest a larger number of calibration points than those
given in table 9. ISO 6143:2001 [94] concerned with gas analysis gives the minimum number
of calibration points recommended for polynomials of degree 1, 2 and 3 as 3, 5 and 7, respec-
tively. Here, experience has shown that for reproducing the curvature in calibration functions, a
larger number of data points is required. One of the causes is the uncertainty associated with the
calibration standards and the instrument responses.

NOTE 3 Further details and practical examples of polynomial calibration in which the Chebyshev
representation is used are given in an ISO Technical Specification [99].
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E Cause-and-effect analysis

E.1 General

E.1.1 A cause-and-effect diagram (also known as an Ishikawa or fishbone diagram) [61–
63] is a hierarchical diagram that shows how multiple effects accumulate to influence
an outcome. Such a diagram can be helpful in establishing a measurement model ini-
tially based on the measurement principle. Cause-and-effect analysis constitutes part of
the toolkit for identifying relevant contributing effects as input quantities. It also helps to
identify contributions to the uncertainty associated with individual input quantities and fa-
cilitates the grouping of related effects to simplify uncertainty evaluation from experimen-
tal data. Combined with a ‘reconciliation’ approach [61] it also helps to match available
information (including, for instance, quality assurance records and validation data [62])
to individual uncertainty contributions. This in turn helps to identify missing information,
avoid double-counting of contributions to measurement uncertainty, and identify contri-
butions (particularly arising from random variation) that are adequately represented by
information from method performance studies.

E.1.2 A comprehensive description of cause-and-effect diagrams, and their use in cause-
and-effect analysis, is beyond the scope of the present guide. However, the example in this
annex gives an indication of the principle as applied to the construction of a measurement
model used for uncertainty evaluation.

NOTE The Eurachem/CITAC Guide [63, annex D] gives a general procedure for cause-and-effect
analysis applied to uncertainty evaluation.

EXAMPLE Organophosphorus pesticide residue in a foodstuff

The amount of an organophosphorus pesticide residue in a foodstuff is to be determined. The
procedure uses solvent extraction of the pesticide from a known mass of the foodstuff. The extract
is purified, made up to a known volume, and the mass concentration of pesticide is determined
using a gas chromatographic procedure. The calibration strategy in this example is single-point
calibration using a solution of a pure reference material. The measurement model used is

wop =
IopγrefVop

IrefRopmsample
fhom f1, (45)

where
wop mass fraction of pesticide in the sample
Iop peak intensity of the sample extract
γref mass concentration of the reference standard
Vop final volume of the extract
Iref peak intensity of the reference standard
Rop nominal correction for losses in extraction and clean-up (‘recovery’)
msample mass of the investigated sub-sample
f1 factor representing the effect of variation under intermediate conditions (precision)
fhom factor representing the effect of sample inhomogeneity

For the purpose of uncertainty evaluation, fhom and f1 are assigned an estimate of unity with a stan-
dard uncertainty obtained from validation studies. The recovery correction Rop and its associated
standard uncertainty are, similarly, determined from validation data.

A cause-and-effect diagram based on the measurement model (45) is given in figure 12 in which
terms related to the precision of individual input quantities have been grouped together to form
a single ‘Repeatability’ branch. Additional features in the figure include the factors affecting the
reference solution concentration γref and additional effects on volume and mass determination.
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NOTE Reference [63] provides further information on the additional terms appearing in figure 12
and on other aspects of this example.

Figure 12: Cause-and-effect diagram for amount of an organophosphorus pesticide residue in a
foodstuff. Adapted with permission from reference [63]

E.2 5M method

E.2.1 Another comprehensive method is to determine the plausible error causes accord-
ing to five categories, as used in [29,144], namely:

— Machines: all effects related to the machines or measuring instruments used in the
measurement process (trueness, repeatability, quantification, drift, linearity, hystere-
sis, . . . ),

— Method: all effects related to the measurement method (choice of a parameter in
the measurement procedure, coefficients of a statistical model, . . . ),

— Environment (Milieu in French): all effects related to the environment (temperature,
pressure, relative humidity, . . . ),

— Material: all effects related to the item/material subject to the measurement (hard-
ness, heterogeneity, alteration, thermal expansion coefficient, . . . ),

— Manpower: all effects related to operator (ability, manual reading, . . . ).

E.2.2 Sometimes, a practitioner could place an identified effect in either of two cate-
gories. The choice made has no influence on the subsequent uncertainty evaluation.

EXAMPLE Cord cross-sectional dimension testing

In testing the safety of toys in which cord is a constituent part, the following measurement proce-
dure is carried out according to the European norm [66]. Whilst under a tension of (25±2)N, the
maximum cross-sectional dimension of the cord is measured at five points approximately equally
spaced along its length using a caliper. The usual interpretation is that ±2 N is taken as the max-
imum permissible error (see JCGM 200:2012, 4.26), which gives the limits of the range of values
that are allowed for the deviation from 25 N and often handled as a rectangular distribution over
this range. The measurand is the average to the nearest 0.1 mm of these five observations as an
approximation to the cross-sectional dimension. Figure 13 provides the corresponding Ishikawa
diagram representing the effects that influence the measurement.
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Figure 13: Ishikawa diagram for the case of the measurement of the cord cross-sectional dimension,
organized as a function of the five categories Machines, Method, Environment, Material, Manpower

E.3 Measurement System Analysis (MSA)

E.3.1 A measuring system can be described as a collection of hardware, software, proce-
dures and methods, human effort, environmental conditions, associated devices, as well as
the objects that are to be measured with the system. In the practical working of the mea-
suring system, each of the elements in this collection combine to cause variation among
measurements of an object that would not be present if the system were perfect. A measur-
ing system can have varying degrees of each of these elements and one or more elements
may be dominant contributors to this variation [10].

E.3.2 A primary goal in conducting an MSA study is to assess the several variance compo-
nents that may be at play. Each element – object, instrument, operator, environment and
measurement method (figure 14) – will have its own variance component that contributes
to the overall variation.

Figure 14: Measurement system analysis

E.3.3 Statistical methods allow the variance components in MSA to be estimated. Some-
times the analyst may only be interested in one of the components, such as repeatability.
In other cases, two or more components may be of interest. Depending on how the MSA
study is designed, the variance components may be estimated independently or combined
as a composite measure [10].
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E.3.4 Cause-and-effect diagrams for use in calculating the propagation of measurement
uncertainties based on MSA are drawn on the principle that each element of the measur-
ing system (figure 14) is represented such as in figure 15 by one arrow or ‘bone’ in the
corresponding ‘fishbone’ or Ishikawa diagram.

Figure 15: Measurement system analysis [32]
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F Linearizing a measurement model and checking its adequacy

F.1 This annex considers the linearization of the non-linear model (see 13.1.4) around
the estimates x1, . . . , xN of X1, . . . , XN . The linearized measurement model takes the form

Y ≈ y + c1(X1 − x1) + · · ·+ cN (XN − xn), (46)

where the estimate of Y is

y = f (x1, . . . , xN ).

In expression (46), c1, . . . , cN are the partial derivatives of the measurement function
f (X1, . . . , XN )with respect to X1, . . . , XN evaluated at x1, . . . , xN . Equation (46) is straight-
forwardly generalized to multivariate and implicit models, and to those involving complex
quantities (see JCGM 102:2011).

F.2 Guidance on validating the use of the law of propagation of uncertainty when applied
to a non-linear measurement model is given in JCGM 101:2008 and JCGM 102:2011. The
validation involves the use of a Monte Carlo method. A simpler but less rigorous way to
check whether linearization is adequate is as follows:

1. For each input quantity X i in turn, form f +i as f evaluated at the input estimates
apart from the ith, which is replaced by x i + u(x i).

2. As a), but form f −i as f evaluated at the input estimates apart from the ith, which
is replaced by x i − u(x i).

3. Correspondingly, evaluate the linearized model (27) in these 2n cases.

4. If the magnitudes of all the deviations of the linearized model from the non-linear
model are considered sufficiently small in the context of the application, the lin-
earized model is deemed fit for purpose of uncertainty evaluation.

The 2N calculated values of f can be used to approximate its partial derivatives with re-
spect to the X i at the estimates of the input quantities, and hence the sensitivity coefficients:

ci ≈
f +i − f −i
2u(x i)

, i = 1, . . . , N . (47)

NOTE 1 Formula (47) is exact if the measurement function f is linear or quadratic in x i . Otherwise,
the numerical error in the formula is proportional to u2(x i).

NOTE 2 Formula (47) does not apply to a quantity that has an exact value, that is, a zero standard
uncertainty.

NOTE 3 A closely related approach is due to Kragten [108].
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EXAMPLE Release of cadmium from ceramic ware (also see example 2 in 10.4.3)

The application of formula (47) to the measurement model (23) for cadmium release from ce-
ramic ware gives exact sensitivity coefficients for all input quantities apart from aV and d since the
model is linear in those quantities. The use of that formula using the relative standard uncertainty
urel(baV) = 0.033 associated with the estimate baV = 5.73dm2 yields −0.002632 as the numeri-
cal approximation to the corresponding sensitivity coefficient compared with the actual value of
−0.002629 obtained following formal differentiation. These values agree to three significant dec-
imal digits. Since d has an exact value, the corresponding sensitivity coefficient is zero.
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