

OIML Member State The Netherlands

OIML Certificate

Number R137/2012-A-NL1-21.05 revision 2 Project number 3939292 Page 1 of 6

Issuing authority NMi Certin B.V. Person responsible: M.Ph.D. Schmidt Endress+Hauser SICK GmbH+Co. KG Applicant and Manufacturer **Bergener Ring 27** 01458 Ottendorf-Okrilla Germany Identification of the An ultrasonic gas meter certified type Type: FLOWSIC600-XT Characteristics See page 2 and further This OIML Certificate is issued under scheme A

This Certificate attests the conformity of the above identified type (represented by the sample(s) identified in the OIML Type Evaluation Report) with the requirements of the following Recommendation of the International Organization of Legal Metrology (OIML):

R 137-1:2012 "Gas meters"

Accuracy class

0,5

This Certificate relates only to the metrological and technical characteristics of the type of measuring instrument covered by the relevant OIML International Recommendation identified above. This Certificate does not bestow any form of legal international approval.

This certificate and supporting reports comply with the requirements of OIML-CS-PD-07 clause 6.2.

Important note: Apart from the mention of the Certificate's reference number and the name of the OIML Member State in which the Certificate was issued, partial quotation of the Certificate and of the associated OIML Type Evaluation Report(s) is not permitted, although either may be reproduced in full.

Issuing Authority

NMi Certin B.V., OIML Issuing Authority NL1 28 April 2025

Certification Board

NMi Certin B.V. Thijsseweg 11 2629 JA Delft The Netherlands T +31 88 636 2332 certin@nmi.nl www.nmi.nl

This document is issued under the provision that no liability is accepted and that the applicant shall indemnify third-party liability.

The notification of NMi Certin B.V. as Issuing Authority can be verified at www.oiml.org This document is digitally signed and sealed. The digital signature can be verified in the blue ribbon at the top of the electronic version of this certificate.

OIML Member State

The Netherlands

OIML Certificate

Number R137/2012-A-NL1-21.05 revision 2 Project number 3939292 Page 2 of 6

The conformity was established by the results of tests and examinations provided in the associated reports:

NMi-2518128-01 revision 1, dated 27 July 2023 that includes 65 pages.

- NMi-3509954-01 dated 27 July 2023 that includes 33 pages.

Characteristics of the measuring instrument

In Table 1 the general characteristics of the measuring instrument are presented. In Table 4 gives an overview of the general characteristics of the family of instruments.

Table 1 General characteristics

Destined for the measurement of	Gas volume			
Environmental classes	M2 / E2			
Accuracy class	0.5			
Minimum operating pressure	atmospheric			
Maximum operating pressure		n transducer ty	ype, see belov	V
Ambient temperature range	-40 +70 °C			
Process gas temperature range	-40 +70 °C			
Designed for		sing humidity &		
Orientation	Horizontal, vertical up and vertical down (all orientations)		1	
Power supply voltage	6 – 24 V DC			
Software identification	See Table 2			
Path Angle	60° for all m	eter types		
Transducers	Туре	Frequency [kHz]	p _{max} [bar]	Beam angle [°]
	15	350	105	8,9
	22	205	200	12,2
	26	205	200	11,7
	28	135	200	11,8
	46	205	200	15,9
	S5 🚽	350	105	9,5
	S6 🔪	205	103	11,9
	S7	135	20	9,0
	S8	135	103	10,6
	K8	135	103	9,9
	T210	205	105	13,7
	T218	205	105	13,7
	T220	205	200	12,2
	T228	205	200	12,2
	T240	205	200	9,5
	H210	205	105	6,8
	H218	205	105	6,8

OIML Member State The Netherlands

Number R137/2012-A-NL1-21.05 revision 2 Project number 3939292 Page 3 of 6

Table 2 Software Identification

	Software versions	CRC Checksum	Remarks
)	1.05.00	0x78E1	Initial release.
	1.06.00	0x06F9	-
	2.01.00	0x1E05	-

The software version and checksum can be accessed via the display of the gas meter.

Table 3 Meter types, path configuration & installation conditions

The meter consists of a cylindrical spool piece with 4 or 8 horizontal direct paths. Multiple configurations can be combined in a single housing according to the table below.

When the meter is equipped with a double meter configuration, the pay and check meter shall have a different indicator. A clear distinction between pay and check indicator shall be present, both meters must have their own nameplate with unique serial number.

FLOWSIC 600-XT 	Metrological relevant transducer paths	Check paths (non-metrological relevant)	Flow disturbance	Minimum installation conditions up- and downstream ^[1]
Standard	4	-	Mild	2D – FC – 8D – USM – 3D
2plex	4	1	Mild	2D – FC – 8D – USM – 3D
Quatro	4	4	Mild	2D – FC – 8D – USM – 3D
Forte	8	-	Mild & Severe	5D – USM – 3D

[1] xD = Minimum straight inlet piping length

FC = Flow conditioner: PTB design, FL600, drawing no. 9211779, d.d. 2014-05-19 USM = Ultrasonic gas meter

OIML Certificate

OIML Member State The Netherlands

Number R137/2012-A-NL1-21.05 revision 2 Project number 3939292 Page 4 of 6

Diameter	Internal bore		Internal bore Maximum		Minimum	
Nominal	minimum	maximum	V_{max}	Vt	V _{min}	
	[mm]	[mm]	[m/s]	[<mark>m/s]</mark>	[m/s]	
3" (80 mm)	73	85		2,45		
4" (100 mm)	94,96	110		2,54		
6" (150 mm)	142	160	39,22	1,75		
8" (200 mm)	190	210		1,57		
10" (250 mm)	235	270		1,54		
12" (300 mm)	270	315	37,84			
14" (350 mm)	315	340	35,64			
16" (400 mm)	360	400	35,48			
18" (450 mm)	405	450				
20" (500 mm)	450	500	34,64		0,31	
22" (550 mm)	495	550	54,04		0,51	
24" (600 mm)	540	600				
26" (650 mm)	585	650	33,96	1,5		
28" (700 mm)	630	700	33,07			
30" (750 mm)	675	750	32,08			
32" (800 mm)	720	800	31,05			
34" (850 mm)	765	850	29,34			
36" (900 mm)	810	900	28,40			
38" (950 mm)	855	950	27,49			
40" (1000 mm)	900	1000	27,09			

Table 4 General characteristics of the family of instruments

Remarks regarding table 3:

- [1] If higher values are chosen for Q_{min} or Q_t and/or lower values for Q_{max}, it has to be taken into account that:
 - If ratio Q_{max} / $Q_{min} \geq 50$ then: Q_{max} / $Q_t \geq 10$
 - If ratio Q_{max} / $Q_{min} \geq 5$ and < 50 ~ then: Q_{max} / $Q_t \geq ~5$
- [2] Depending on the internal bore, the flow rate in m³/h can be calculated. The corresponding flow rates can be calculated as follows:

 $Q = v \cdot \frac{1}{4} \cdot \pi \cdot D^2 \cdot 3600$

Where:

ICI C		
Q	= flow rate	[m³/h]
v	= velocity	[m/s]
D	= internal diameter	[m]

[3] Example calculation for a 4" ultrasonic gas meter with an internal bore of 94,96 mm: $Q_{max} = 39,22 \cdot \frac{1}{4} \cdot 3,14159 \cdot 94,96^2 \cdot 3600 = 1000 \text{ m}^3/\text{h}$

OIML Certificate

Number R137/2012-A-NL1-21.05 revision 2 Project number 3939292 Page 5 of 6

Installation conditions:

Installation requirements

OIML Member State The Netherlands

+

Any components which could affect the gas flow must be avoided within the prescribed inlet pipe length. The inlet pipe must be designed as a straight pipe section of the same nominal diameter as the gas meter. The necessary straight pipe length is stated on the name plate of the meter.

The installation requirements, based on accuracy class and mild and/or severe flow disturbance are specified in table 2. The used flow conditioner (if applicable) is of type: "PTB design flow conditioner", type FL600, as documented in drawing number 9211779, dated 2014-05-19.

Working pressure

The spool piece and the transducers can be used up to the specified pressure as given in table 1.

The two pressures, at which the meter shall be calibrated, without intermediate adjustment over its full flow rate range during initial verification ($p_{min \ calibration}$ and $p_{max \ calibration}$), shall be equal to the operating pressure range ($p_{min} \ and \ p_{max}$) as given on the type plate.

In case the claimed minimum working pressure (p_{min}) of the meter is \geq 4 bar, the meter can be calibrated on one pressure. The working pressure range (p_{min} and p_{max}) is allowed to be within $\frac{1}{2} \cdot p_{fix}$ and $3 \cdot p_{fix}$.

The ultrasonic gas meter does not make use of an internal pressure or temperature sensor. The setting for pressure and temperature are a fixed value (fixed setting before calibration) in the parameter settings:

- In the menu sequence p_{fix} can be checked and represents the fixed pressure setting.
- In the menu sequence T_{fix} can be checked and represents the fixed temperature setting.

For a maximum working pressure (p_{max}) of the ultrasonic gas meter above 65 bar(a), a maximum calibration pressure $(p_{max \ calibration})$ of around 65 bar(a) is allowed since this is the highest possible test pressure at any test location traceable to (inter)national standards.

Thermowell

A thermowell may be mounted at 2D - 5D from the outlet of the meter.

Bi-directional flow measurement

During conformity assessment it is sufficient to verify a bi-directional meter in one direction only. For bi-directional flow measurement the outlet pipe and flow conditioner shall be identical to the inlet. The installation of a temperature sensor is at 2–5D from the outlet of the meter. For bi-directional applications an additional temperature sensor can be installed 2–5D upstream of the meter. For bi-directional applications the meter and pipe spools including the thermowell(s), shall be calibrated as a meter package during the examination for putting into use of the gas meter.

OIML Member State The Netherlands

Number R137/2012-A-NL1-21.05 revision 2 Project number 3939292 Page 6 of 6

Alternative welded configuration of the gas meter

The central meter body can be welded directly onto the flanges or to inlet and outlet pipes. The welding may not cause more than a 3% diameter step. The meter shall be installed as stated in *"Installation requirements"*. The central meter body, including welded piping or welded flanges, shall be calibrated as a meter package during the examination for putting into use of the gas meter.

Maintenance

A transducer path pair and the main electronics board can be exchanged without deterioration of the metrological performance.

Revision history

This revision replaces the previous version.

Revision	Date	Description of the modification
Initial	4 August 2021	Initial issue
1	27 July 2023	New Electronics, firmware, and transducers.
2	28 April 2025	Manufacturer name change and software update. Previously named as "Sick Engineering GmbH".